2023年天津市滨海新区塘沽一中高考数学三模试卷
发布:2024/5/13 8:0:8
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
-
1.已知全集U={1,2,3,4,5},集合A={1,2},B={2,3},则∁U(A∪B)=( )
组卷:265引用:1难度:0.8 -
2.已知a,b为实数,则使得“a>b>0”成立的一个充分不必要条件为( )
组卷:336引用:7难度:0.6 -
3.函数f(x)=(x+1)ln|x-1|的大致图像是( )
组卷:373引用:6难度:0.8 -
4.2022年12月4日是第九个国家宪法日,主题为“学习宣传贯彻党的二十大精神,推动全面贯彻实施宪法”,耀华园结合线上教育教学模式,开展了云升旗,云班会等活动.其中由学生会同学制作了宪法学习问卷,收获了有效答卷2000份,先对其得分情况进行了统计,按照[50,60)、[60,70)、…、[90,100]分成5组,并绘制了如图所示的频率分布直方图,下列说法不正确的是( )
组卷:494引用:3难度:0.7 -
5.已知
,则( )a=(34)45,b=lnπ,c=(45)34组卷:404引用:4难度:0.6 -
6.点F是抛物线x2=8y的焦点,A为双曲线C:
的左顶点,直线AF平行于双曲线C的一条渐近线,则实数b的值为( )x28-y2b=1组卷:614引用:7难度:0.5
三、解答题:本大题共5小题,共75分,解答应写出文字说明,证明过程或演算步骤.
-
19.已知椭圆
+x2a2=1(a>b>0)的左焦点为F(-c,0),右顶点为A,点E的坐标为(0,c),△EFA的面积为y2b2.b22
(I)求椭圆的离心率;
(II)设点Q在线段AE上,|FQ|=c,延长线段FQ与椭圆交于点P,点M,N在x轴上,PM∥QN,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.32
(i)求直线FP的斜率;
(ii)求椭圆的方程.组卷:3516引用:7难度:0.1 -
20.已知函数f(x)=x+a(lnx+1),a∈R.
(1)求函数f(x)的单调区间和极值;
(2)若f(p)=f(q)=0(p≠q),求证:pq>1;
(3)已知点P(m,m),是否存在过点P的两条直线与曲线g(x)=ex-1+1,(-1<x<3)相切?若存在,求出m的取值范围;若不存在,请说明理由.组卷:169引用:1难度:0.5