试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

2023-2024学年北京市东城区景山学校高三(上)月考数学试卷(10月份)

发布:2024/9/15 8:0:8

一、选择题(共10小题;共40分)

  • 1.已知集合U={1,2,3,4,5,6},A={1,3,5},B={2,3,4},则集合A∩∁UB是(  )

    组卷:227引用:5难度:0.9
  • 2.下列函数在其定义域内既是奇函数又是增函数的是(  )

    组卷:379引用:6难度:0.9
  • 3.已知向量
    a
    与向量
    b
    的夹角为120°,
    |
    a
    |
    =
    |
    b
    |
    =
    1
    ,则
    |
    a
    +
    2
    b
    |
    =(  )

    组卷:208引用:4难度:0.7
  • 4.已知
    π
    2
    θ
    3
    π
    2
    ,且
    cos
    θ
    +
    2
    π
    3
    =
    1
    3
    ,则sinθ的值为(  )

    组卷:140引用:2难度:0.5
  • 5.函数f(x)=lg(x2-2x-3)在[a,+∞)上单调递增的一个充分不必要条件是(  )

    组卷:42引用:3难度:0.6
  • 6.已知某种垃圾的分解率为v,与时间t(月)满足函数关系式v=abt(其中a,b为非零常数).若经过12个月,这种垃圾的分解率为10%,经过24个月,这种垃圾的分解率为20%,那么这种垃圾完全分解,至少需要经过(  )(参考数据:lg2≈0.3.)

    组卷:142引用:11难度:0.7
  • 7.若lna=-1,eb=
    2
    ,3c=ln3,则a,b,c的大小关系为(  )

    组卷:842引用:7难度:0.6

三、解答题(共6小题;共85分)

  • 20.已知函数f(x)=
    x
    2
    +
    ax
    -
    b
    e
    x
    x
    R
    的一个极值点是x=2.
    (Ⅰ)求a与b的关系式,并求f(x)的单调区间;
    (Ⅱ)设a>0,g(x)=a2ex-2,若存在x1,x2∈[0,3],使得|f(x1)-g(x2)|<
    2
    e
    2
    成立,求实数a的取值范围.

    组卷:206引用:3难度:0.2
  • 21.已知无穷数列{an}满足an=max{an+1,an+2}-min{an+1,an+2}(n=1,2,3,⋯),其中max{x,y}表示x,y中最大的数,min{x,y}表示x,y中最小的数.
    (1)当a1=1,a2=2时,写出a4的所有可能值;
    (2)若数列{an}中的项存在最大值,证明:0为数列{an}中的项;
    (3)若an>0(n=1,2,3,⋯),是否存在正实数M,使得对任意的正整数n,都有an≤M?如果存在,写出一个满足条件的M;如果不存在,说明理由.

    组卷:449引用:12难度:0.3
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正