试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

2022-2023学年辽宁省沈阳市同泽高级中学高一(下)月考数学试卷(4月份)

发布:2024/5/19 8:0:9

一、单选题(每

  • 1.已知
    α
    π
    2
    π
    ,tanα=-2,则cosα=(  )

    组卷:587引用:4难度:0.9
  • 2.已知非零向量
    a
    b
    满足(
    a
    +
    b
    )⊥(
    a
    -
    b
    ),则(  )

    组卷:45引用:3难度:0.9
  • 3.化简
    cos
    π
    +
    α
    sin
    2
    π
    +
    α
    cos
    -
    3
    π
    2
    -
    α
    sin
    -
    π
    -
    α
    cos
    -
    π
    -
    α
    sin
    2
    π
    -
    α
    =(  )

    组卷:922引用:2难度:0.8
  • 4.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面釈所用的经验公式为:弧田面积=
    1
    2
    (弦×矢+矢2).弧田,由圆弧和其所对弦所围成.公式中“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差现有圆心角为
    π
    3
    ,弦长等于2米的弧田.按照《九章算术》中弧田面积的经验公式竍算所得弧田面积(单位,平方米)为(  )

    组卷:277引用:7难度:0.7
  • 5.已知非零向量
    m
    n
    满足4|
    m
    |=3|
    n
    |,cos<
    m
    n
    >=
    1
    3
    .若
    n
    ⊥(t
    m
    +
    n
    ),则实数t的值为(  )

    组卷:8288引用:29难度:0.7
  • 6.为了得到
    y
    =
    sin
    x
    4
    -
    π
    8
    的图像,只需将y=sinx每一点的纵坐标不变(  )

    组卷:293引用:4难度:0.7
  • 7.已知
    a
    =
    sin
    3
    π
    7
    b
    =
    cos
    4
    π
    7
    c
    =
    tan
    -
    3
    π
    7
    ,则a,b,c的大小关系为(  )

    组卷:75引用:1难度:0.9

四、解答题

  • 21.已知函数f(x)=Asin(ωx+φ)(1<ω<2)的振幅为2,初相为
    π
    6
    ,函数y=f(x+π)的图象关于y轴对称.
    (Ⅰ)求函数y=f(x)的最小正周期和单调递增区间;
    (Ⅱ)函数
    g
    x
    =
    -
    2
    f
    2
    3
    4
    x
    +
    mf
    3
    4
    x
    x
    [
    π
    6
    π
    2
    ]
    ,若g(x)≤1恒成立,求m的取值范围.

    组卷:138引用:4难度:0.5
  • 22.已知函数f(x)=2sinωx,其中常数ω>0.
    (1)若y=f(x)在
    [
    -
    π
    4
    2
    π
    3
    ]
    上单调递增,求ω的取值范围;
    (2)令ω=2,将函数y=f(x)的图象向左平移
    π
    6
    个单位长度,再向上平移1个单位长度,得到函数y=g(x)的图象,区间[a,b](a,b∈R且a<b)满足:y=g(x)在[a,b]上至少含有100个零点,在所有满足上述条件的[a,b]中,求b-a的最小值.

    组卷:97引用:2难度:0.5
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正