如图1,在△ABC中,D,E分别是边AB,AC上的点.对“三角形中位线定理”逆向思考,可得以下3则命题:
Ⅰ.若D是AB的中点,DE=12BC,则E是AC的中点;
Ⅱ.若DE∥BC,DE=12BC,则D,E分别是AB,AC的中点;
Ⅲ.若D是AB的中点,DE∥BC,则E是AC的中点.

(1)小明通过对命题Ⅰ的思考,发现命题Ⅰ是假命题.
他的思考方法如下:在图2中使用尺规作图作出满足命题Ⅰ条件的点E,从而直观判断E不一定是AC的中点.
小明尺规作图的方法步骤如下:
①在图2中,作边BC的垂直平分线,交BC于点M,
②在图2中,以点D为圆心,以BM的长为半径画弧与边AC交于点E和E'.
请你在图2中完成以上作图.
(2)小明通过对命题Ⅱ和命题Ⅲ的思考,发现这两个命题都是真命题,请你从这两个命题中选择一个,并借助于图1进行证明.
DE
=
1
2
BC
DE
=
1
2
BC
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/2 8:0:9组卷:970引用:5难度:0.5