背景介绍:勾股定理是几何学中的明珠,充满着魅力,千百年来,人们对它的证明精彩粉呈,其中有著名的数学家,也有业余数学爱好者,向常春在1994年构造发现了一个新的证法.
小试牛刀:把两个全等的直角三角形如图1放置,其三边长分别为a,b,c.显然,∠DAB=∠B=90°,AC⊥DE,请用a,b,c分别表示出梯形ABCD、四边形AECD、△EBC的面积,再探究这三个图形面积之间的关系,可得到勾股定理:

S梯形ABCD=12a(a+b)12a(a+b),S△EBC=12b(a-b)12b(a-b),S四边形AECD=12c212c2,则它们满足的关系式为 12a(a+b)=12b(a-b)+12c212a(a+b)=12b(a-b)+12c2,经化简,可得到勾股定理.(提示:对角线互相垂直的四边形面积等于对角线乘积的一半)
知识运用:
(1)如图2,铁路上A,B两点(看作直线上的两点)相距40千米,C,D为两个村庄(看作两个点),AD⊥AB,BC⊥AB,垂足分别为A、B,AD=25千米,BC=16千米,则两个村庄的距离为 4141千米(直接填空);
(2)在(1)的背景下,若AB=40千米,AD=24千米,BC=16千米,要在AB上建造一个供应站P,使得PC=PD,请用尺规作图在图3中作出P点的位置并求出AP的距离.
(3)知识迁移:借助上面的思考过程与几何模型,求代数式x2+9+(16-x)2+81的最小值 2020(0<x<16).
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
x
2
+
9
(
16
-
x
)
2
+
81
【考点】三角形综合题.
【答案】a(a+b);b(a-b);c2;a(a+b)=b(a-b)+c2;41;20
1
2
1
2
1
2
1
2
1
2
1
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/29 8:0:10组卷:726引用:4难度:0.3
相似题
-
1.已知直角△ABC,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,连接EF.
(1)如图1,求证:∠BED=∠AFD;
(2)如图1,求证:BE2+CF2=EF2;
(3)如图2,当∠ABC=45°,若BE=4,CF=3,求△DEF的面积.发布:2024/12/23 14:0:1组卷:216引用:3难度:0.2 -
2.一副三角板如图1摆放,∠C=∠DFE=90°,∠B=30°,∠E=45°,点F在BC上,点A在DF上,且AF平分∠CAB,现将三角板DFE绕点F顺时针旋转(当点D落在射线FB上时停止旋转).
(1)当∠AFD=°时,DF∥AC;当∠AFD=°时,DF⊥AB;
(2)在旋转过程中,DF与AB的交点记为P,如图2,若△AFP有两个内角相等,求∠APD的度数;
(3)当边DE与边AB、BC分别交于点M、N时,如图3,若∠AFM=2∠BMN,比较∠FMN与∠FNM的大小,并说明理由.发布:2024/12/23 18:30:1组卷:1761引用:10难度:0.1 -
3.已知A(0,4),B(-4,0),D(9,4),C(12,0),动点P从点A出发,在线段AD上,以每秒1个单位的速度向点D运动:动点Q从点C出发,在线段BC上,以每秒2个单位的速度向点B运动,点P、Q同时出发,当其中一个点到达终点时,另一个点随之停止运动,设运动时间为t(秒).
(1)当t=秒时,PQ平分线段BD;
(2)当t=秒时,PQ⊥x轴;
(3)当时,求t的值.∠PQC=12∠D发布:2024/12/23 15:0:1组卷:186引用:3难度:0.1