[问题提出]:将一个边长为n(n≥2)的菱形的四条边n等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?
[问题探究]:要研究上面的问题,我们不妨先从特例入手,进而找到一般规律.
探究一:将一个边长为2的菱形的四条边分别2等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?
如图1,从上往下,共有2行,我们先研究平行四边形的个数:
(1)第一行有斜边长为1,底长为1~2的平行四边形,共有2+1=3个;
(2)第二行有斜边长为1,底长为1~2的平行四边形,共有2+1=3个;
为了便于归纳分析,我们把平行四边形下面的底在第二行的所有平行四边形均算作第二行的平行四边形,以下各行类同第二行.因此底第二行还包括斜边长为2,底长为1~2的平行四边形,共有2+1=3个.
即:第二行平行四边形共有2×3个.
所以如图1,平行四边形共有2×3+3-9-(2+1)2.
我们再研究菱形的个数:
分析:边长为1的菱形共有22个,边长为2的菱形共有12个,
所以:如图1,菱形共有22+12=5=16×2×3×5个
探究二:将一个边长为3的菱形的四条边分别3等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?
如图2,从上往下,共有3行,我们先研究平行四边形的个数:
(1)第一行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=6个;
(2)第二行有斜边长为1,底长为1~2的平行四边形,共有3+2+1=6个;底在第二行还包括斜边长为2,底长为1~3的平行四边形,共有3+2+1=6个,即:第二行平行四边形共有2×6个.
(3)第三行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=6个;底在第三行还包括斜边长为2,底长为1~3的平行四边形,共有3+2+1=6个.底在第三行还包括斜边长为3,底长为1~3的平行四边形,共有3+2+1=6个.即:第三行平行四边形共有3×6个.
所以:如图2,平行四边形共有3×6+2×6+6=(3+2+1)×6=(3+2+1)2.
我们再研究菱形的个数:
分析:边长为1的菱形共有32个,边长为2的菱形共有22个,边长为3的菱形共有12个.
所以:如图2,菱形共有32+22+12=14=16×3×4×7个.
探究三:将一个边长为4的菱形的四条边4等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?
如图3,从上往下,共有4行,我们先研究平行四边形的个数:
(1)第一行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=10个.
(2)第二行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=10个.底在第二行还包括斜边长为2,底长为1~4的平行四边形,共有4+3+2+1=10个.
即:第二行平行四边形总共有2×10个.
(3)模仿上面的探究,第三行平行四边形总共有3×(4+3+2+1)3×(4+3+2+1)个;
(4)按照以上规律,第四行平行四边形总共有4×(4+3+2+1)4×(4+3+2+1)个.
所以:如图3,平行四边形总共有(4+3+2+1)2(4+3+2+1)2个.
我们再研究菱形的个数:
分析:边长为1的菱形共有42个,边长为2的菱形共有32个,边长为3的菱形共有22个,边长为4的菱形共有12个.
所以:如图3,菱形共有42+32+22+12=30=16×4×5×94×5×9个.(仿照前面的探究,写成三个整数相乘的形式)
【问题解决】
将一个边长为n(n≥2)的菱形的四条边n等分,连接对边对应的等分点,根据上边的规律,得出该菱形被剖分的网格中的平行四边形的个数是(n+n-1+n-2+…+1)2(n+n-1+n-2+…+1)2和菱形的个数分别是16×n(n+1)(2n+1)n(n+1)(2n+1).(用含n的代数式表示).
【问题应用】
将一个边长为n(n≥2)的菱形的四条边n等分,连接各边对应的等分点,若得出该菱形被剖分的网格中的平行四边形的个数是441个,则n=66.
【拓展延伸】
将一个边长为n(n≥2)的菱形的四条边n等分,连接各边对应的等分点,当该菱形被剖分的网格中的平行四边形的个数与菱形的个数之比是135:19时,则n=99.
1
6
1
6
1
6
1
6
【考点】规律型:图形的变化类.
【答案】3×(4+3+2+1);4×(4+3+2+1);(4+3+2+1)2;4×5×9;(n+n-1+n-2+…+1)2;n(n+1)(2n+1);6;9
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:157引用:2难度:0.5
相似题
-
1.元宵节,广场上要设计一排灯笼增强气氛,其中有一个设计由以下图案逐步演变而成,其中圆圈代表灯笼,n代表第n次演变过程,s代表第n次演变后的灯笼的个数.仔细观察下列演变过程,当s=190时,n=.
发布:2025/5/25 1:30:1组卷:153引用:3难度:0.5 -
2.2022年北京冬奥会圆满结束,以吉祥物“冰墩墩”为主要元素的纪念币也受到市民的热烈欢迎,扎西与卓嘎用纪念币有规律地摆出如图所示的图案.其中,第1个图案有5枚纪念币,第2个图案有1枚纪念币,第3个图案有17枚纪念币……按此规律摆下去,第n个图案有 枚纪念币(用含n的代数式表示).
发布:2025/5/25 1:30:1组卷:25引用:2难度:0.5 -
3.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2023个白色纸片,则n的值为 .
发布:2025/5/25 2:0:6组卷:494引用:5难度:0.7