我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N.点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y).

(1)如图2,ω=45°,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,OA=2,OC=1.
①点A、B在此斜坐标系内的坐标分别为A (2,0)(2,0)、B (1,2)(1,2);
②设点P(x,y)在经过O、B两点的直线上,直接写出y与x之间满足的关系为 y=2xy=2x;
(2)若ω=120°,O为坐标原点.
①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=43,求圆心M的斜坐标;
②如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围.
2
2
2
2
4
3
【考点】圆的综合题.
【答案】(2,0);(1,);y=x
2
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/17 8:0:9组卷:34引用:1难度:0.1
相似题
-
1.如图,PA、PB是⊙O的切线,A、B是切点,AC是⊙O的直径,连接OP,交⊙O于点D,交AB于点E.
(1)求证:BC∥OP;
(2)若E恰好是OD的中点,且四边形OAPB的面积是16,求阴影部分的面积;3
(3)若sin∠BAC=,且AD=213,求切线PA的长.3发布:2025/5/23 16:0:1组卷:2045引用:7难度:0.1 -
2.【问题提出】
(1)如图①,AB为⊙O的一条弦,圆心O到弦AB的距离为4,若⊙O的半径为7,则⊙O上的点到弦AB的距离最大值为 ;
【问题探究】
(2)如图②,在△ABC中,∠BAC=60°,AD为BC边上的高,若AD=6,求△ABC面积的最小值;
【问题解决】
(3)“双减”是党中央、国务院作出的重大决策部署,实施一年多来,工作进展平稳,取得了阶段性成效,为了进一步落实双减政策,丰富学生的课余生活,某校拟建立一块综合实践基地,如图③,△ABC为基地的大致规划示意图,其中∠ABC=90°,BD平分∠ABC交AC于点D,点P为BC上一点,学校计划将四边形ABPD部分修建为农业实践基地,并沿BD铺设一条人行走道,△CDP部分修建为兴趣活动基地.根据规划要求,米,∠CDP=45°.且农业实践基地部分(四边形ABPD)的面积应尽可能小,问四边形ABPD的面积是否存在最小值?若存在,求出其最小值;若不存在,请说明理由.BD=802发布:2025/5/23 16:0:1组卷:251引用:1难度:0.3 -
3.AB、AC为圆O的弦,OA平分∠BAC.
(1)如图1,求证:弧AB=弧AC;
(2)如图2,连接BO并延长交圆O于点F,连接AF,作BG⊥AC于点G,延长AO交BG于点M,求证:AF=BM;
(3)如图3,在(2)的条件下,连接OG,延长BG交圆O于点D,连接CD并延长,与AF的延长线交于点K,AB=2FK,BC=6,求OG的长.发布:2025/5/23 16:30:1组卷:112引用:1难度:0.2