【结论理解】
“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形的四个顶点共圆.该小组继续利用上述结论进行探究.
【问题探究】
(1)如图1,在矩形ABCD中,点E为CD上一点,将△BCE沿BE翻折,点C的对应点F恰好落在边AD上,做经过F、E、C三点的圆,请根据以上结论判断点B点 在在(填“在”或“不在”)该圆上;
(2)如图2,四边形ABCD是⊙O的内接四边形,∠ABC=∠ADC,AB=BC=52,CD=6,求四边形ABCD的面积.
【问题解决】
(3)如图3,四边形ABCD是某公园的一块空地,现计划在空地中修建AC与BD两条小路,(小路宽度不计),将这块空地分成四部分,记两条小路的交点为P,其中△ADP与△BCP空地中种植草坪,△ABP与△CDP空地中分别种植郁金香和牡丹花.已知AB=CD,BD=150m,AC=100m,∠BAC+∠BDC=180°,且点C到BD的距离是40m,求种植牡丹花的地块△CDP的面积比种植郁金香的地块△ABP的面积多多少平方米?

2
【考点】四点共圆.
【答案】在
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:534引用:4难度:0.1
相似题
-
1.定义:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,简称“四点共圆”.我们学过了“圆的内接四边形的对角互补”这一定理,它的逆命题“对角互补的四边形四个顶点共圆”是证明“四点共圆”的一种常用方法.除此之外,我们还经常用“同旁张角相等”来证明“四点共圆”.如图1,在线段AB同侧有两点C,D.连接AD,AC,BC,BD,如果
,那么A,B,C,D“四点共圆”∠C=∠D
(1)如图2,已知四边形ABCD中,对角线AC、BD相交于点P,点E在CB的延长线上,下列条件:①∠1=∠2;②∠2=∠4:③∠5=:④PA•PC=PB•PD.其中,能判定A,B,C,D“四点共圆”的条件有 :∠ADC
(2)如图3,直线y=x+6与x轴交于点A,与y轴交于点B,点C在x轴正半轴上,点D在y轴负半轴上,若A,B,C,D“四点共圆”,且,求四边形ABCD的面积;∠ADC=105°
(3)如图4,已知△ABC是等腰三角形,AB=AC,点D是线段BC上的一个动点(点D不与点B重合,且BD<CD,连结AD,作点C关于AD的对称点E,连接EB并延长交AD的延长线于F,连接AE,DE.
①求证:A,D,B,E“四点共圆”;
②若AB=2,AD•AF的值是否会发生变化,若不变化,求出其值:若变化,请说明理由.2发布:2025/6/12 1:0:1组卷:697引用:3难度:0.3 -
2.综合与实践
“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.
提出问题:
如图1,在线段AC同侧有两点B,D,连接AD,AB,BC,CD,如果∠ABC=∠ADC,那么A,B,C,D四点在同一个圆上.
探究展示:求证:点A,B,C,D四点在同一个圆上.
如图2,作经过点A,C,D的⊙O,在劣弧AC上取一点E(不与A,C重合),连接AE,CE,则∠AEC+∠D=180°
.
(1)请完善探究展示.
(2)如图3,在四边形ABCD中,∠1=∠2,∠3=45°,则∠4的度数为 .
拓展探究:
(3)如图4,已知△ABC是等腰三角形,AB=AC,点D在BC上(不与BC的中点重合),连接AD.作点C关于AD的对称点E,连接EB并延长交AD的延长线于F,连接AB,DE.
①求证:A,D,B,E四点共圆;
②若AB=2,AD•AF的值是否会发生变化,若不变化,求出其值;若变化,请说明理由.2发布:2025/6/1 13:0:1组卷:764引用:2难度:0.3 -
3.设有边长为1的正方形,试在这个正方形的内接正三角形中找出面积最大的和一个面积最小的,并求出这两个面积(须证明你的论断).
发布:2025/5/28 11:0:1组卷:126引用:1难度:0.7