如图,在以点O为原点的平面直角坐标系中点A,B的坐标分别为(a,0),(a,b),点C在y轴上,且BC∥x轴,a,b满足|a-3|+b-4=0.点P从原点出发,以每秒2个单位长度的速度沿着O-A-B-C-O的路线运动(回到O为止).
(1)直接写出点A,B,C的坐标;
(2)当点P运动3秒时,连接PC,PO,求出点P的坐标,并直接写出∠CPO,∠BCP,∠AOP之间满足的数量关系;
(3)点P运动t秒后(t≠0),是否存在点P到x轴的距离为12t个单位长度的情况.若存在,求出点P的坐标;若不存在,请说明理由.
b
-
4
1
2
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/31 8:0:9组卷:3151引用:15难度:0.5