如图,△ABC为等边三角形,边长为6,P,Q分别为AB,AC边上的动点,点P,点Q同时从点A出发,若P以32个单位每秒的速度从点A向点B运动,点Q以2个单位每秒的速度从点A向点C运动,设运动时间为t.
(1)如图1,①当t=22时,P是线段AB的中点,此时线段AQ与AC的数量关系是AQ=2323AC.
②在点P、Q运动过程中,△APQ是否能构成等腰三角形?BB;
A.有可能 B.不可能 C.无法确定
(2)如图2,连接CP、BQ交于点M,请问当t为何值时,∠BMP=60°;
(3)如图3,D为BC边上的中点,P,Q在运动过程中,D,P,Q三点是否能构成使∠PDQ=120°的等腰三角形?若能,试求:
①运动时间t;
②设四边形APDQ的面积为S1,△ABC的面积为S2.请直接写出S1与S2的关系式;若不能,请说明理由.

3
2
2
3
2
3
【考点】三角形综合题.
【答案】2;;B
2
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/6 8:0:8组卷:759引用:4难度:0.3
相似题
-
1.已知直角△ABC,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,连接EF.
(1)如图1,求证:∠BED=∠AFD;
(2)如图1,求证:BE2+CF2=EF2;
(3)如图2,当∠ABC=45°,若BE=4,CF=3,求△DEF的面积.发布:2024/12/23 14:0:1组卷:216引用:3难度:0.2 -
2.已知A(0,4),B(-4,0),D(9,4),C(12,0),动点P从点A出发,在线段AD上,以每秒1个单位的速度向点D运动:动点Q从点C出发,在线段BC上,以每秒2个单位的速度向点B运动,点P、Q同时出发,当其中一个点到达终点时,另一个点随之停止运动,设运动时间为t(秒).
(1)当t=秒时,PQ平分线段BD;
(2)当t=秒时,PQ⊥x轴;
(3)当时,求t的值.∠PQC=12∠D发布:2024/12/23 15:0:1组卷:185引用:3难度:0.1 -
3.一副三角板如图1摆放,∠C=∠DFE=90°,∠B=30°,∠E=45°,点F在BC上,点A在DF上,且AF平分∠CAB,现将三角板DFE绕点F顺时针旋转(当点D落在射线FB上时停止旋转).
(1)当∠AFD=°时,DF∥AC;当∠AFD=°时,DF⊥AB;
(2)在旋转过程中,DF与AB的交点记为P,如图2,若△AFP有两个内角相等,求∠APD的度数;
(3)当边DE与边AB、BC分别交于点M、N时,如图3,若∠AFM=2∠BMN,比较∠FMN与∠FNM的大小,并说明理由.发布:2024/12/23 18:30:1组卷:1755引用:10难度:0.1