(1)已知:如图1,AE∥CF,易知∠APC=∠A+∠C,请补充完整证明过程:
证明:过点P作MN∥AE.
∵MN∥AE(已作).
∴∠APM=∠A∠A( 两直线平行,内错角相等两直线平行,内错角相等),
又∵AE∥CF,MN∥AE.
∴MN∥CF.
∴∠MPC=∠C∠C( 两直线平行,内错角相等两直线平行,内错角相等).
∴∠APM+∠CPM=∠A+∠C.
即∠APC=∠A+∠C.
(2)变式:AE∥CF,P1,P2是直线EF上的两点,猜想∠A,∠AP1P2,∠P1P2C,∠C这四个角之间的关系,并直接写出图2、图3、图4三种情况下这四个角之间的关系,并选一种关系说明理由.
【答案】∠A;两直线平行,内错角相等;∠C;两直线平行,内错角相等
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/3 8:0:9组卷:111引用:2难度:0.6
相似题
-
1.如图,D是AB上一点,E是AC上一点,∠ADE=60°,∠B=60°,∠AED=40°.
(1)DE和BC平行吗?
(2)∠C是多少度?为什么?发布:2025/1/23 8:0:2组卷:73引用:2难度:0.7 -
2.如图,D是AB上一点,E是AC上一点,∠ADE=65°,∠B=65°,∠AED=45°.求∠C的度数.
发布:2025/1/23 8:0:2组卷:233引用:1难度:0.8 -
3.如图,∠ABC+∠ECB=180°,∠P=∠Q.
求证:∠1=∠2.
根据图形和已知条件,请补全下面这道题的解答过程.
证明:∵∠ABC+∠ECB=180° ,
∴AB∥ED .
∴∠ABC=∠BCD .
又∵∠P=∠Q(已知),
∴PB∥.
∴∠PBC=.
又∵∠1=∠ABC-,∠2=∠BCD-,
∴∠1=∠2(等量代换).发布:2024/12/23 20:0:2组卷:1155引用:10难度:0.7