【阅读理解】
我们知道,1+2+3+…+n=n(n+1)2,那么12+22+32+…+n2结果等于多少呢?
在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为n个nn+n+…+n,即n2,这样,该三角形数阵中共有n(n+1)2个圆圈,所有圆圈中数的和为12+22+32+…+n2.

【规律探究】
将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n-1行的第一个圆圈中的数分别为n-1,2,n),发现每个位置上三个圆圈中数的和均为 2n+12n+1,由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12+22+32+…+n2)=n(n+1)(2n+1)2n(n+1)(2n+1)2,因此,12+22+32+…+n2=n(n+1)(2n+1)6n(n+1)(2n+1)6.
【解决问题】
根据以上发现,计算:12+22+32+…+201721+2+3+…+2017的结果为 13451345.
n
(
n
+
1
)
2
n
个
n
n
+
n
+
…
+
n
n
(
n
+
1
)
2
n
(
n
+
1
)
(
2
n
+
1
)
2
n
(
n
+
1
)
(
2
n
+
1
)
2
n
(
n
+
1
)
(
2
n
+
1
)
6
n
(
n
+
1
)
(
2
n
+
1
)
6
1
2
+
2
2
+
3
2
+
…
+
201
7
2
1
+
2
+
3
+
…
+
2017
【考点】规律型:数字的变化类.
【答案】2n+1;;;1345
n
(
n
+
1
)
(
2
n
+
1
)
2
n
(
n
+
1
)
(
2
n
+
1
)
6
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/16 20:0:8组卷:2154引用:15难度:0.6
相似题
-
1.如图是①2011年10月日历,现用一长方形在日历中任意框出4个数如图②,请用一个等式表示a、b、c、d之间的关系:.
发布:2025/1/29 8:0:1组卷:56引用:2难度:0.7 -
2.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.右面两个图框是用法国“小九九”计算7×8和8×9的两个示例.若用法国“小九九”计算7×9,左、右手依次伸出手指的个数是( )
发布:2024/12/5 8:0:1组卷:182引用:3难度:0.9 -
3.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可用下列哪个式子来表示( )
发布:2024/12/6 13:0:3组卷:247引用:5难度:0.5