在⊙O中,直径AB=10,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.
(1)如图1,当PQ∥AB时,求PQ的长度;
(2)如图2,当点P在BC上移动时,求PQ长的最大值.
【答案】(1);
(2).
5
6
3
(2)
5
3
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/7 1:0:8组卷:408引用:1难度:0.5
相似题
-
1.Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE,OD.
(Ⅰ)如图①,求∠ODE的大小;
(Ⅱ)如图②,连接OC交DE于点F,若OF=CF,求∠A的大小.发布:2025/6/18 2:30:1组卷:2269引用:2难度:0.1 -
2.如图,MN是⊙O的直径,MN=4,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为.
发布:2025/6/17 21:0:1组卷:1009引用:5难度:0.5 -
3.如图,四边形ABCD为正方形,⊙O过正方形的顶点A和对角线的交点P,分别交AB、AD于点F、E.
(1)求证:DE=AF;
(2)若⊙O的半径为,AB=32,求2+1的值.AEED发布:2025/6/17 22:0:1组卷:2956引用:5难度:0.3