试卷征集
加入会员
操作视频

如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥DC于点F,连接EF,给出下列四个结论:①AP=EF;②AP⊥EF;③∠PFE=∠BAP;④PD=
2
EC,其中正确的是(  )

【答案】D
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/27 14:0:0组卷:925引用:6难度:0.6
相似题
  • 1.正方形具有而菱形不具有的性质是(  )

    发布:2025/6/19 1:0:1组卷:776引用:25难度:0.9
  • 2.如图,E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,F、G是垂足,若正方形ABCD周长为a,则EF+EG等于(  )

    发布:2025/6/19 1:0:1组卷:217引用:4难度:0.9
  • 3.(1)如图(1)点P是正方形ABCD的边CD上一点(点P与点C,D不重合),点E在BC的延长线上,且CE=CP,连接BP,DE.求证:△BCP≌△DCE;
    (2)在(1)条件下,直线EP交AD于F,连接BF,FC.点G是FC与BP的交点.
    ①若CD=2PC时,求证:BP⊥CF;
    ②若CD=n•PC(n是大于1的实数)时,记△BPF的面积为S1,△DPE的面积为S2.求证:S1=(n+1)S2

    发布:2025/6/18 21:0:1组卷:439引用:64难度:0.5
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正