试卷征集
加入会员
操作视频

(1)探索发现
如图1,在△ABC中,点D在边BC上,△ABD与△ADC的面积分别记为S1与S2,试判断
S
1
S
2
BD
CD
的数量关系,并说明理由.
(2)阅读分析
小东遇到这样一个问题:如图2,在Rt△ABC中,AB=AC,∠BAC=90°,射线AM交BC于点D,点E、F在AM上,且∠CEM=∠BFM=90°,试判断BF、CE、EF三条线段之间的数量关系.
小东利用一对全等三角形,经过推理使问题得以解决.
填空:①图2中的一对全等三角形为
△AFB与△CEA
△AFB与△CEA

②BF、CE、EF三条线段之间的数量关系为
CE=EF+BF
CE=EF+BF

(3)类比探究
如图3,在四边形ABCD中,AB=AD,AC与BD交于点O,点E、F在射线AC上,且∠BCF=∠DEF=∠BAD.
①判断BC、DE、CE三条线段之间的数量关系,并说明理由;
②若OD=3OB,△AED的面积为2,直接写出四边形ABCD的面积.

【考点】三角形综合题
【答案】△AFB与△CEA;CE=EF+BF
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/28 17:0:1组卷:899引用:3难度:0.2
相似题
  • 1.已知a,b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x.
    (1)直接写出c及x的取值范围;
    (2)若x是大于14的偶数.
    ①求c的长;
    ②判断△ABC的形状.

    发布:2025/6/16 22:30:4组卷:117引用:2难度:0.4
  • 2.在△ABC中,∠ACB=2∠B.

    (1)如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证:CD=DE=
    ;AC+CD=
    ;(请直接写出结论,不用证明.)
    (2)如图②,当∠C≠90°,AD为∠BAC的角平分线时,模仿题(1)的思路,求证:AB=AC+CD;
    (3)如图③,当AD为△ABC的外角平分线时,线段AB,AC,CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.

    发布:2025/6/16 18:30:2组卷:191引用:1难度:0.4
  • 3.如图所示,在△ABC中,∠B=90°,AB=6cm,BC=8cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.
    【思考】如果点P,Q分别从点A,B同时出发,经过几秒,△PBQ的面积等于8cm2
    【探究】如果点P,Q分别从点A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能,说明理由.
    【拓展】若点P沿射线AB方向从点A出发,以1cm/s的速度移动,点Q沿射线CB方向从点C出发,以2cm/s的速度移动,点P,Q同时出发,则经过几秒,△PBQ的面积为1cm2

    发布:2025/6/16 21:0:1组卷:233引用:1难度:0.3
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正