如图1,抛物线y=233x2+bx+c过B(3,0),C(0,-33)两点,动点M从点B出发,以每秒2个单位长度的速度沿BC方向运动,设运动的时间为t秒.

(1)求抛物线y=233x2+bx+c的表达式;
(2)如图1,过点M作DE⊥x轴于点D,交抛物线于点E,当t=1时,求四边形OBEC的面积;
(3)如图2,动点N同时从点O出发,以每秒1个单位长度的速度沿OB方向运动,将△BMN绕点M逆时针旋转180°得到△GMF′.
①当点N运动到多少秒时,四边形NBFG是菱形;
②当四边形NBFG是矩形时,将矩形NBFG沿x轴方向平移使得点F落在抛物线上时,直接写出此时点F的坐标.
2
3
3
3
2
3
3
【考点】二次函数综合题.
【答案】(1)抛物线的表达式为y=x2-x-3;
(2)S四边形OBEC=;
(3)①当点N运动到秒时,四边形NBFG是菱形;
②点F的坐标为(,-2)或(,-2).
2
3
3
3
3
(2)S四边形OBEC=
13
3
2
(3)①当点N运动到
3
5
②点F的坐标为(
3
+
33
4
3
3
-
33
4
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/24 1:0:8组卷:391引用:10难度:0.1
相似题
-
1.已知:如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在x轴上,点P在抛物线上.是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.发布:2025/6/13 5:30:2组卷:4390引用:34难度:0.1 -
2.如图,抛物线y=-(x-1)2+4与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,作CD∥x轴,交抛物线于另一点D,连结AC,BC.
(1)点A的坐标为 .点B的坐标为 .
(2)动点E从点B出发,以1个单位/秒的速度沿线段BC向终点C运动,设运动时间为t秒,则当以C,D,E为顶点的三角形与△ACB相似时,求t的值.发布:2025/6/13 1:0:1组卷:333引用:1难度:0.2 -
3.在平面直角坐标系xOy中,抛物线y=ax2+bx-5恰好经过A(2,-9),B(4,-5),C(4,-13)三点中的两点.
(1)求该抛物线表达式;
(2)在给出的平面直角坐标系中画出这个抛物线;
(3)如果直线y=k与该抛物线有交点,那么k的取值范围是 .发布:2025/6/13 0:30:2组卷:60引用:4难度:0.5