试卷征集
加入会员
操作视频

(一)问题提出
(1)平面直角坐标系中,如果A、B是x轴上的点,他们对应的横坐标分别是xA,xB,C、D是y轴上的两点,它们对应的纵坐标分别是yc,yD,那么A、B两点间的距离,C、D两点间的距离分别是多少?
(2)平面直角坐标系中任意一点P(x,y)到原点的距离是多少?
(3)已知平面上的两点P1(x1,y1),P2(x2,y2),如何求P1,P2的距离|P1P2|.
(二)问题探究
(1)求平面直角坐标系中x轴上的两点E(5,0)、F(-2,0)之间的距离,可以借助绝对值表示|EF|=|5-(-2)|=7,对于y轴上两点,M(0,-3)、N(0,5)之间的距离|MN|=|3-5|=2.
结论:在平面直角坐标系中,如果A、B是x轴上两点,它们对应的横坐标分别是xA,xB,则A、B两点间的距离|AB|=
|xA-xB|
|xA-xB|
;C、D是y轴上的两点,它们对应的纵坐标分别是yc,yD,那么C、D两点间的距离|CD|=
|yC-yD|
|yC-yD|

(2)如图1:平面直角坐标系中任意一点B(3,4),过B向x轴上作垂线,垂足为M,由勾股定理得|OB|=
5
5
;结论:平面直角坐标系中任意一点P(x,y)到原点的距离|OP|=
x
2
+
y
2
x
2
+
y
2

(3)如图2,要求AB或DE的长度,可以转化为求Rt△ABC或Rt△DEF的斜边长,例如:从坐标系中发现:D(-7,5),E(4,-3)所以|DF|=|5-(-3)|=8,|EF|=|4-(-7)|=11,所以由勾股定理得:|DE|=
8
2
+
1
1
2
=
185
.在图2中请用上面的方法求线段AB的长:AB=
5
5
;在图3中:设P1(x1,y1),P2(x2,y2),试用x1,x2,y1,y2表示:|P1P2|=
x
1
-
x
2
2
+
y
1
-
y
2
2
x
1
-
x
2
2
+
y
1
-
y
2
2

(三)拓展应用
试用以上所得结论解决如下问题:已知A(0,1),B(4,3).
(1)直线AB与x轴交于点D,求线段BD的长.
(2)C为坐标轴上的点,且使得△ABC是以AB为底边的等腰三角形,则C的坐标为
(3,0)或(0,6)
(3,0)或(0,6)
(不必写出解答过程,直接写出即可).

【考点】三角形综合题
【答案】|xA-xB|;|yC-yD|;5;
x
2
+
y
2
;5;
x
1
-
x
2
2
+
y
1
-
y
2
2
;(3,0)或(0,6)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/2 15:0:2组卷:239引用:1难度:0.5
相似题
  • 1.(1)阅读理解:
    如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是

    (2)问题解决:如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.

    发布:2025/6/17 11:0:1组卷:624引用:7难度:0.4
  • 2.已知,如图,在平面直角坐标系中,A为y轴正半轴上一点,B为x轴负半轴上一点.
    (1)若BP平分∠ABO,AP平分∠BAO的外角,求∠P.
    (2)如图2,C为x轴正半轴上一点,BP平分∠ABC,且P在AC的垂直平分线上.若∠ABC=2∠ACB,求证:AP∥BC.
    (3)在第(2)问的条件下,D是AB上一点,E是x轴正半轴上一点,连AE交DP于H.当∠DHE与∠ABE满足什么条件时,DP=AE,请说明理由.

    发布:2025/6/17 19:30:1组卷:75引用:1难度:0.3
  • 3.把一副三角板按如图1摆放(点C与点E重合),点B,C(E),F在同一直线上.∠ACB=∠DFE=90°,∠A=30°,∠DEF=45°,BC=EF=8cm,点P是线段AB的中点.△DEF从图1的位置出发,以4cm/s的速度沿CB方向匀速运动,如图2,DE与AC相交于点Q,连接PQ.当点D运动到AC边上时,△DEF停止运动.设运动时间为t(s).
    (1)当t=1时,求AQ的长;
    (2)当t为何值时,点A在线段PQ的垂直平分线上?
    (3)当t为何值时,△APQ是直角三角形?

    发布:2025/6/17 21:30:1组卷:286引用:3难度:0.1
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正