如图1,△ABC中,AB=BC=CA,∠A=∠ABC=∠ACB=60°,在△ABC的顶点A,C处各有一只小蚂蚁,它们同时出发,分别以相同速度由A向B和由C向A爬行,经过t(s)后,它们分别爬行到了D,E处,连接DC,BE,DC与BE相交于点F.
(1)求证:△ACD≌△CBE;
(2)小蚂蚁在爬行过程中,∠BFC的大小会变化吗?若变化,请说明理由;若不变,求∠BFC的度数;
(3)如图2,当小蚂蚁分别爬行到线段AB,CA的延长线上的D,E处时,若EB的延长线与CD交于点Q,其他条件不变,请直接写出∠CQE的度数.
【考点】三角形综合题.
【答案】(1)证明见解答过程;
(2)∠BFC无变化.其度数为120°;
(3)60°.
(2)∠BFC无变化.其度数为120°;
(3)60°.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/19 18:0:1组卷:104引用:5难度:0.2
相似题
-
1.已知动点P以每秒1cm的速度沿图(1)的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图(2)中的图象表示.若AB=3cm,试回答下列问题
(1)图(1)中的BC长是多少?
(2)图(2)中的a是多少?
(3)图(1)中的图形面积是多少?
(4)图(2)中的b是多少?发布:2025/6/15 5:30:3组卷:343引用:2难度:0.3 -
2.如图,在平面直角坐标系中,A(a,0),B(b,0),且满足
,C在第三象限,坐标为(n+1,n),连接AC,BC,(a+5)2+b-1=0
(1)请直接写出:a=,b=,AB=,S△ABC=(用含n的代数式表示);
(2)在线段AB上取一点D,连接CD并延长,交y轴于点E,连接AE,BE,
①若S△DCA=2S△DEA,求点E坐标,用含n的代数式表示.
②若S△ADC=S△DBE,求点E坐标.发布:2025/6/15 14:0:2组卷:144引用:1难度:0.1 -
3.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A,C不重合),Q是CB延长线上一点,由B向CB延长线方向运动(Q不与B重合),连接PQ交AB于D,过P作PE⊥AB于E.若两点同时出发,以相同的速度每秒1个单位运动,运动时间为t.
(1)当∠PQC=30°时,求t的值;
(2)求证:PD=DQ;
(3)当P,Q在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.发布:2025/6/15 6:30:1组卷:151引用:1难度:0.4