已知△ADE和△ABC都是等腰直角三角形,∠ADE=∠BAC=90°,P为AE的中点,连接DP.
(1)如图1,点A、B、D在同一条直线上,直接写出DP与BC的位置关系;
(2)将图1中的△ADE绕点A逆时针旋转,当AD落在图2所示的位置时,点C、D、P恰好在同一条直线上.
①在图2中,按要求补全图形,并证明∠BAE=∠ACP;
②连接BD,交AE于点F,判断线段BF与DF的数量关系,并证明.

【考点】几何变换综合题.
【答案】(1)证明见解答过程;
(2)①补全图形见解答过程;
②BF=DF.证明见解答过程.
(2)①补全图形见解答过程;
②BF=DF.证明见解答过程.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/9 8:0:9组卷:57引用:1难度:0.5
相似题
-
1.已知:如图,在矩形ABCD和等腰Rt△ADE中,AB=8cm,AD=AE=6cm,∠DAE=90°.点P从点B出发,沿BA方向匀速运动.速度为1cm/s;同时,点Q从点D出发,沿DB方向匀速运动,速度为1cm/s.过点Q作QM∥BE,交AD于点H,交DE于点M,过点Q作QN∥BC,交CD于点N.分别连接PQ,PM,设运动时间为t(s)(0<t<8).
解答下列各题:
(1)当PQ⊥BD时,求t的值;
(2)设五边形PMDNQ的面积为S(cm2),求S与t之间的函数关系式.发布:2025/5/24 22:0:1组卷:27引用:1难度:0.4 -
2.[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连接AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连接EC.
[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=°.
[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.
[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.6发布:2025/5/25 3:0:2组卷:819引用:3难度:0.3 -
3.在等腰△ABC中,AB=AC=5,BC=6.动点M、N分别在两腰AB、AC上(M不与A、B重合,N不与A、C重合),且MN∥BC.将△AMN沿MN所在的直线折叠,使点A的对应点为P.
(1)当MN为何值时,点P恰好落在BC上?
(2)当MN=x,△MNP与等腰△ABC重叠部分的面积为y,试写出y与x的函数关系式.当x为何值时,y的值最大,最大值是多少?
(3)是否存在x,使y等于S△ABC的四分之一?如果存在,请直接写出x的值;如果不存在,请说明理由.发布:2025/5/25 1:0:1组卷:208引用:2难度:0.5