如图,在平面直角坐标系中,点A,B的坐标分别为(1,1)、(1,2),经过A、B作y轴的垂线分别交于D、C两点,得到正方形ABCD,抛物线y=x2+bx+c经过A、C两点,点P为抛物线上一点(不与点A重合),过点P分别作PF∥x轴交y轴于点F,PE∥y轴交x轴于点E,设点P的横坐标为m.
(1)求抛物线的解析式.
(2)当抛物线在矩形PFOE内部的部分y随x的增大而减小时,m的取值范围为 m<0m<0.
(3)当P点在第一象限,矩形PFOE与正方形ABCD重叠部分图形的周长为l.
①若x≥m时,函数y=x2+bx+c的最小值为2m,求m的值;
②当m<2时,求l与m之间的函数关系式.
【考点】二次函数综合题.
【答案】m<0
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/12 8:0:9组卷:201引用:1难度:0.2
相似题
-
1.如图,已知抛物线y=ax2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于C(0,3),DE所在的直线是该抛物线的对称轴.
(1)求抛物线的解析式及顶点D的坐标;
(2)连接AD,P是AD上的动点,P′是点P关于DE的对称点,连接PE,过点P′作P′F∥PE,交x轴于点F,设四边形PP′FE的面积为y,EF=x,求y与x之间的函数关系式.发布:2025/6/16 2:0:1组卷:231引用:2难度:0.3 -
2.如图,抛物线y=ax2+bx+c与x轴交于原点O和点A,且其顶点B关于x轴的对称点坐标为(2,1).
(1)求抛物线的函数表达式;
(2)抛物线的对称轴上存在定点F,使得抛物线y=ax2+bx+c上的任意一点G到定点F的距离与点G到直线y=-2的距离总相等.
①证明上述结论并求出点F的坐标;
②过点F的直线l与抛物线y=ax2+bx+c交于M,N两点.
证明:当直线l绕点F旋转时,+1MF是定值,并求出该定值;1NF
(3)点C(3,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQBC周长最小,直接写出P,Q的坐标.发布:2025/6/16 5:0:1组卷:2172引用:5难度:0.4 -
3.如图,已知抛物线y=ax2+bx+5经过A(-5,0),B(-4,-3)两点,与x轴的另一个交点为C,顶点为D,连接BD,CD.
(1)求该抛物线的表达式;
(2)判断△BCD的形状,并说明理由;
(3)若点P为该抛物线上一动点(与点B、C不重合),该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,请直接写出满足条件的所有点P的坐标;若不存在,请说明理由.发布:2025/6/16 5:30:3组卷:1379引用:2难度:0.1