【概念认识】定义:对角线互相垂直且相等的四边形叫做垂等四边形.
(1)如图1,已知在垂等四边形ABCD中,对角线AC与BD交于点E,若AB⊥AD,AB=4cm,cos∠ABD=45,则AC的长度=55cm.
【数学理解】(2)在探究如何画“圆内接垂等四边形”的活动中,小李想到可以利用八年级的所学三角形全等.如图2,在⊙O中,已知AB是弦,OA、OB是半径,求作:⊙O的内接垂等四边形ABCD.(要求:尺规作图,不写作法,保留痕迹)
【问题解决】(3)如图3,已知A是⊙O上一定点,B为⊙O上一动点,以AB为一边作出⊙O的内接垂等四边形(A、B不重合且A、B、O三点不共线),对角线AC与BD交于点E,⊙O的半径为22,当点E到AD的距离为3时,求弦AB的长度.

4
5
2
3
【考点】圆的综合题.
【答案】5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/3 8:0:9组卷:455引用:1难度:0.5
相似题
-
1.对于平面直角坐标系xOy中的线段PQ,给出如下定义:若存在△PQR使得S△PQR=PQ2,则称△PQR为线段PQ的“等幂三角形”,点R称为线段PQ的“等幂点”.
(1)已知A(3,0).
①在点P1(1,3),P2(2,6),P3(-5,1),P4(3,-6)中,是线段OA的“等幂点”的是;
②若存在等腰△OAB是线段OA的“等幂三角形”,求点B的坐标;
(2)已知点C的坐标为C(2,-1),点D在直线y=x-3上,记图形M为以点T(1,0)为圆心,2为半径的⊙T位于x轴上方的部分.若图形M上存在点E,使得线段CD的“等幂三角形”△CDE为锐角三角形,直接写出点D的横坐标xD的取值范围.发布:2025/5/23 10:0:1组卷:821引用:2难度:0.5 -
2.A,B是⊙C上的两个点,点P在⊙C的内部.若∠APB为直角,则称∠APB为AB关于⊙C的内直角,特别地,当圆心C在∠APB边(含顶点)上时,称∠APB为AB关于⊙C的最佳内直角.如图1,∠AMB是AB关于⊙C的内直角,∠ANB是AB关于⊙C的最佳内直角.在平面直角坐标系xOy中.
(1)如图2,⊙O的半径为5,A(0,-5),B(4,3)是⊙O上两点.
①已知P1(1,0),P2(0,3),P3(-2,1),在∠AP1B,∠AP2B,∠AP3B中,是AB关于⊙O的内直角的是 ;
②若在直线y=2x+b上存在一点P,使得∠APB是AB关于⊙O的内直角,求b的取值范围.
(2)点E是以T(t,0)为圆心,4为半径的圆上一个动点,⊙T与x轴交于点D(点D在点T的右边).现有点M(1,0),N(0,n),对于线段MN上每一点H,都存在点T,使∠DHE是DE关于⊙T的最佳内直角,请直接写出n的最大值,以及n取得最大值时t的取值范围.发布:2025/5/23 9:30:1组卷:1662引用:10难度:0.1 -
3.已知:⊙O内接△ABC,CD平分∠ACB交AB于点E,交⊙O于点D,AF平分∠BAC交CD于点F,连接AD,BD.
(1)求证:AD=BD;
(2)求证:∠DAF=∠AFD;
(3)若点E为DF中点,BD=2,求CF长?发布:2025/5/23 10:0:1组卷:130引用:1难度:0.5