如图,在平面直角坐标系中,点A的坐标为(2,0),以OA为边在第四象限作等边△AOB,点C为x轴正半轴一动点(OC>2),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.
(1)求证:△OBC≌△ABD;
(2)随着点C位置的变化,∠AEO是否会发生变化?若没有变化,求出∠AEO的度数;若有变化,请说明理由;
(3)在(2)的条件下,若在x轴上有一动点P,使△PAE是等腰三角形,请直接写出满足条件的P点坐标.
【考点】三角形综合题.
【答案】(1)证明见解答;
(2)不变化,为30°;
(3)(-2,0)或(6,0).
(2)不变化,为30°;
(3)(-2,0)或(6,0).
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/28 22:0:2组卷:13引用:1难度:0.4
相似题
-
1.如图,三角形ABO的三个顶点的坐标分别为O(0,0),A(5,0),B(2,4).
(1)求三角形OAB的面积;
(2)若O,B两点的位置不变,点M在x轴上,则点M在什么位置时,三角形OBM的面积是三角形OAB的面积的2倍?
(3)若O,A两点的位置不变,点N由点B向上或向下平移得到,则点N在什么位置时,三角形OAN的面积是三角形OAB的面积的2倍?发布:2025/6/17 6:30:2组卷:331引用:2难度:0.3 -
2.已知a,b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x.
(1)直接写出c及x的取值范围;
(2)若x是大于14的偶数.
①求c的长;
②判断△ABC的形状.发布:2025/6/16 22:30:4组卷:117引用:2难度:0.4 -
3.如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.
(1)求证:AD=BE;
(2)求∠AEB的度数;
(3)探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM⊥DE于点M,连接BE.
①∠AEB的度数为 °;
②线段DM,AE,BE之间的数量关系为 .(直接写出答案,不需要说明理由)发布:2025/6/17 6:0:2组卷:365引用:3难度:0.6