通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整.
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,试猜想EF、BE、DF之间的数量关系.
(1)思路梳理:把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,由∠ADG=∠B=90°,得,∠FDG=180°,即点F、D、G共线,易证△AFG≌△AFE△AFE,故EF、BE、DF之间的数量关系为 EF=DF+BEEF=DF+BE.
(2)类比引申:如图2,点E、F分别在正方形ABCD的边CB、DC的延长线上,∠EAF=45°.连接EF,试猜想EF、BE、DF之间的数量关系为 EF=DF-BEEF=DF-BE,并给出证明.
(3)联想拓展:如图3,在△ABC中,已知∠BAC=45°,AD⊥BC垂足于点D,且BD=6,CD=4.求AD的长.
【考点】四边形综合题.
【答案】△AFE;EF=DF+BE;EF=DF-BE
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/3 3:0:2组卷:170引用:2难度:0.1
相似题
-
1.如图,菱形ABCD中,AB=5,连接BD,sin∠ABD=
,点P是射线BC上一点(不与点B重合),AP与对角线BD交于点E,连接EC.55
(1)求证:AE=CE;
(2)当点P在线段BC上时,设BP=n(0<n<5),求△PEC的面积;(用含n的代数式表示)
(3)当点P在线段BC的延长线上时,若△PEC是直角三角形,请直接写出BP的长.发布:2025/1/28 8:0:2组卷:255引用:1难度:0.1 -
2.如图,在菱形ABCD中,AB=10,sinB=
,点E从点B出发沿折线B-C-D向终点D运动.过点E作点E所在的边(BC或CD)的垂线,交菱形其它的边于点F,在EF的右侧作矩形EFGH.35
(1)如图1,点G在AC上.求证:FA=FG.
(2)若EF=FG,当EF过AC中点时,求AG的长.
(3)已知FG=8,设点E的运动路程为s.当s满足什么条件时,以G,C,H为顶点的三角形与△BEF相似(包括全等)?发布:2025/1/28 8:0:2组卷:2055引用:3难度:0.1 -
3.如图,在菱形ABCD中,∠ABC=60°,AB=2.过点A作对角线BD的平行线与边CD的延长线相交于点E.P为边BD上的一个动点(不与端点B,D重合),连接PA,PE,AC.
(1)求证:四边形ABDE是平行四边形;
(2)求四边形ABDE的周长和面积;
(3)记△ABP的周长和面积分别为C1和S1,△PDE的周长和面积分别为C2和S2,在点P的运动过程中,试探究下列两个式子的值或范围:①C1+C2,②S1+S2,如果是定值的,请直接写出这个定值;如果不是定值的,请直接写出它的取值范围.发布:2025/1/28 8:0:2组卷:577引用:1难度:0.2