综合与实践
问题情境:
如图①,点E为正方形ABCD内一点,∠AEB=90°,将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBE'(点A的对应点为点C),延长AE交CE'于点F,连接DE.
猜想证明:
(1)试判断四边形BE'FE的形状,并说明理由;
(2)如图②,若DA=DE,请猜想线段CF与FE'的数量关系并加以证明;
解决问题:
(3)如图①,若DE=317,CF=3,请直接写出AB的长.

DE
=
3
17
【考点】四边形综合题.
【答案】(1)四边形BE'FE是正方形,理由见解答过;
(2)CF=E'F;理由见解答过程;
(3)AB=15.
(2)CF=E'F;理由见解答过程;
(3)AB=15.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/14 17:0:4组卷:355引用:4难度:0.2
相似题
-
1.如图,平面直角坐标系中O是原点,▱OABC的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:
①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=203453
其中正确的结论是(填写所有正确结论的序号).发布:2025/6/16 11:0:1组卷:3337引用:5难度:0.2 -
2.如图,四边形ABCD中,AD∥BC,CD=10,AB=2
,动点P沿着A-D运动,同时点Q从点D沿着D-C-B运动,它们同时到达终点,设Q点运动的路程为x,DP的长度为y,且y=-17x+18.34
(1)求AD,BC的长.
(2)设△PQD的面积为S,在P,Q的运动过程中,S是否存在最大值,若存在,求出S的最大值;若不存在,请说明理由.
(3)当PQ与四边形ABCD其中一边垂直时,求所有满足要求的x的值.发布:2025/6/16 4:0:2组卷:414引用:2难度:0.4 -
3.如图,在Rt△ABC中,∠C=90°,AC=10,∠A=60°.点P从点B出发沿BA方向以每秒2个单位长度的速度向点A匀速运动,同时点Q从点A出发沿AC方向以每秒1个单位长度的速度向点C匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点P、Q运动的时间是t秒.过点P作PM⊥BC于点M,连接PQ、QM.
(1)请用含有t的式子填空:AQ=,AP=,PM=;
(2)是否存在某一时刻使四边形AQMP为菱形?如果存在,求出相应的t值;如果不存在,说明理由;
(3)当t为何值时,△PQM为直角三角形?请说明理由.发布:2025/6/16 3:0:1组卷:740引用:6难度:0.4