阅读下面的证明过程:
如图1,△ACB、△ADC和△BEC都是直角三角形,其中AC=BC,且直角顶点都在直线l上,求证:△ACD≌△CBE.
证明:由题意,∠BCE+∠ACD=180°-90°=90°,∠DAC+∠ACD=90°.
∴∠DAC=∠BCE.
在△ACD和△CBE中,
∠ADC=∠CEB ∠DAC=∠BCE AC=BC
,
∴△ACD≌△CBE.
像这种“在一条直线上有三个直角顶点”的几何图形,我们一般称其为“一线三垂直”图形,随着几何学习的深入,我们还将对这类图形有更深入的探索.
请结合以上阅读,解决下列问题:
(1)如图2,在△ABC中,∠BAC=90°,AB=AC,过点A作直线AE,BD⊥AE于点D,CE⊥AE于点E,探索BD、DE、CE之间的数量关系,并证明你的结论.
(2)如图3,△ABC和△ADE都是等腰直角三角形,∠ACB=∠AED=90°,AC=BC,AE=DE,且点E在BC上,连接BD,求证:∠ABD=90°.
(3)如图4,在一款名为超级玛丽的游戏中,玛丽到达一个高为12米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为18米,高为4米的矮台B,请写出旗杆OM的高度是 17米17米.(不必书写解题过程)
∠ ADC =∠ CEB |
∠ DAC =∠ BCE |
AC = BC |
【考点】三角形综合题.
【答案】17米
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/2 6:0:2组卷:302引用:2难度:0.6
相似题
-
1.已知直角△ABC,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,连接EF.
(1)如图1,求证:∠BED=∠AFD;
(2)如图1,求证:BE2+CF2=EF2;
(3)如图2,当∠ABC=45°,若BE=4,CF=3,求△DEF的面积.发布:2024/12/23 14:0:1组卷:216引用:3难度:0.2 -
2.一副三角板如图1摆放,∠C=∠DFE=90°,∠B=30°,∠E=45°,点F在BC上,点A在DF上,且AF平分∠CAB,现将三角板DFE绕点F顺时针旋转(当点D落在射线FB上时停止旋转).
(1)当∠AFD=°时,DF∥AC;当∠AFD=°时,DF⊥AB;
(2)在旋转过程中,DF与AB的交点记为P,如图2,若△AFP有两个内角相等,求∠APD的度数;
(3)当边DE与边AB、BC分别交于点M、N时,如图3,若∠AFM=2∠BMN,比较∠FMN与∠FNM的大小,并说明理由.发布:2024/12/23 18:30:1组卷:1755引用:10难度:0.1 -
3.已知A(0,4),B(-4,0),D(9,4),C(12,0),动点P从点A出发,在线段AD上,以每秒1个单位的速度向点D运动:动点Q从点C出发,在线段BC上,以每秒2个单位的速度向点B运动,点P、Q同时出发,当其中一个点到达终点时,另一个点随之停止运动,设运动时间为t(秒).
(1)当t=秒时,PQ平分线段BD;
(2)当t=秒时,PQ⊥x轴;
(3)当时,求t的值.∠PQC=12∠D发布:2024/12/23 15:0:1组卷:185引用:3难度:0.1