已知:△ABC中,BC=a,AC=b,AB=c,a是最小的合数,b、c满足等式:|b-5|+(c-6)2=0,点P是△ABC的边上一动点,点P从点B开始沿着△ABC的边按BA→AC→CB顺序顺时针移动一周,回到点B后停止,移动的路径为S,移动的速度为每秒3个单位.如图1所示.
(1)试求出△ABC的周长;
(2)当点P移动到AC边上时,化简:|S-4|+|3S-6|+|4S-45|;
(3)如图2所示,若点Q是△ABC的边上一动点,P、Q两点分别从B、C同时出发,即当点P开始移动的时候,点Q从点C开始沿着△ABC的边顺时针移动,移动的速度为每秒5个单位,试问:当t为何值时,P、Q两点的路径(在三角形的边上的距离)相差为3?此时点P在△ABC的哪条边上?

【考点】三角形综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/8 11:0:12组卷:274引用:3难度:0.5
相似题
-
1.如图,△ABC是等腰三角形,AB=AC=5,∠BAC是锐角.点D从点A向点B运动,点E是AC上一动点,在运动过程中保持AD=CE,连接DE,若
,则在点D运动的过程中,线段DE的中点F的运动路径长是 .S△ABC=152发布:2025/5/25 17:0:1组卷:127引用:1难度:0.4 -
2.如图,在△ABC中,∠BAC=90°,AB=AC,点D在边AC上,点E在线段BD上,连接AE,且AE=BE,延长AE交BC于点F,过点A作AG⊥AE交BD的延长线于点G.
(1)①若∠GBC=30°,则∠AEG=°;②如图1,求证:∠AGB=2∠GBC;
(2)如图2,连接CG,若∠BGC=90°,求证:BG平分∠ABC;
(3)如图3,若AF=AG,求证:D是AC的中点.发布:2025/5/25 17:0:1组卷:201引用:1难度:0.3 -
3.已知:在△ABC中,AB=AC,∠BAC=120°,点F是线段BC上一点,D、E是射线AF上两点,且∠ADB=∠BAC,∠AEC=60°.
(1)如图1,
①填空:∠BAE ∠ACE;(填“>”或“=”或“<”)
②判定三条线段AD,BD,CE的数量关系,并说明理由;
(2)若∠DBC=15°,则直接写出的值.FCBF发布:2025/5/25 17:30:1组卷:278引用:3难度:0.1