(1)如图1,AB∥CD.写出∠BOD与∠B,∠D之间的数量关系,并说明理由;
(2)如图2,在(1)的条件下,延长BO交CD于点E,若∠CEO=5∠OED,∠BOD=75°,求∠D的度数;
(3)如图3,结合(1)中的结论,探究∠BOC与∠A,∠ABO,∠ACO之间的数量关系,并说明理由.

【考点】三角形综合题.
【答案】( 1 )∠BOD=∠B+∠D,理由见解析;
(2)45°;
(3)∠BOD=∠B+∠ACO+∠A,理由见解析.
(2)45°;
(3)∠BOD=∠B+∠ACO+∠A,理由见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/26 8:0:9组卷:157引用:2难度:0.3
相似题
-
1.如图,在△ABC中,∠ACB=90°,CA=CB,∠MCN=45°,射线CM交直线AB于点P,过点A作AD⊥CM于点D,直线AD交直线CN于点E,连接BE.
(1)当点P在线段AB上时,如图①,求证:AD+BE=DE;
(2)当点P在BA的延长线上时,如图②;当点P在AB的延长线上时,如图③,线段AD,DE,BE之间又有怎样的数量关系?直接写出你的猜想,不必证明.发布:2025/5/25 19:30:2组卷:79引用:1难度:0.3 -
2.已知:在△ABC中,AB=AC,∠BAC=120°,点F是线段BC上一点,D、E是射线AF上两点,且∠ADB=∠BAC,∠AEC=60°.
(1)如图1,
①填空:∠BAE ∠ACE;(填“>”或“=”或“<”)
②判定三条线段AD,BD,CE的数量关系,并说明理由;
(2)若∠DBC=15°,则直接写出的值.FCBF发布:2025/5/25 17:30:1组卷:278引用:3难度:0.1 -
3.如图①,在△ABC中,∠ABC=90°,过点B作直线BD交边AC于点D,过点A作AE⊥BD,垂足为点E,过点C作CF⊥BD,垂足为点F,点O为AC的中点,连结OE、OF.
【证明推断】求证:OE=OF.
小明给出的思路:先分别延长EO、CF交于点M,再证明△AEO≌△CMO.请你根据小明的思路完成证明过程.
【拓展应用】如图②,当BC=4AB,∠DBC=45°时,解决下列问题:
(1)∠EFO的大小为 度.
(2)的值为 .ODOC发布:2025/5/25 18:0:1组卷:179引用:2难度:0.4