试卷征集
加入会员
操作视频

小明在学完了平行四边形这个章节后,想对“四边形的不稳定性”和“四边形的判定”有更好的理解,做了如下的探究:他将8个木棍和一些钉子组成了一个正方形ABCD和平行四边形HEFG(如图1),且BC,EF在一条直线上,点D落在边HE上.经小明测量,发现此时B、D、G三个点在一条直线上,∠EFG=67.5°,HG=2.

(1)求此时DG的长度;
(2)设BC的长度为a,CE=
2
-
1
a
2
-
1
a
(用含a的代数式表示);
(3)小明接着探究,在保证BC、EF位置不变的前提条件下,从点A向右推动正方形,直到四边形EFGH刚好变为矩形时停止推动(如图2).若此时
D
E
2
=
8
2
-
1
,求BF的长度.

【考点】四边形综合题
【答案】
2
-
1
a
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/6 8:0:9组卷:41引用:2难度:0.5
相似题
  • 1.如图,四边形ABCD、EBGF都是正方形.
    (1)如图1,若AB=4,EC=
    17
    ,求FC的长;
    (2)如图2,正方形EBGF绕点B逆时针旋转,使点G正好落在EC上,猜想AE、EB、EC之间的数量关系,并证明你的结论;
    (3)如图3,在(2)条件下,∠BCE=22.5°,EC=2,点M为直线BC上一动点,连接EM,过点M作MN⊥EC,垂足为点N,直接写出EM+MN的最小值.

    发布:2025/5/24 19:0:1组卷:233引用:2难度:0.5
  • 2.如图1,在菱形ABCD中,AB=10,∠BAD=α(0°<α<180°),连接AC,点Q是AD上的一点,连接BQ交AC于点E,过点E作EG⊥AD于点G,连接DE.
    (1)当α=60°且
    DQ
    AQ
    =
    1
    2
    时,
    DE
    EQ
    =
    ,DG=

    (2)当
    DQ
    AQ
    =
    1
    时,若S菱形ABCD=50时.求DG的长度;
    (3)当
    DQ
    AQ
    =
    1
    时,如图2,分别以点E,A为圆心,大于
    1
    2
    AE
    为半径画弧.交于点F和H,作直线FH,分别交AB,AC,AD于点P,N,M,请你判断点M的位置是否变化?若不变,求AM的长;若变化说明理由.

    发布:2025/5/24 19:0:1组卷:88引用:4难度:0.3
  • 3.如图,在正方形ABCD中,AB=6,E为AB的中点,连结CE,作CF⊥EC交射线AD于点F,过点F作FG∥CE交射线CD于点G,连结EG交AD于点H.

    (1)求证:CE=CF.
    (2)求HD的长.
    (3)如图2,连结CH,点P为CE的中点,Q为AF上一动点,连结PQ,当∠QPC与四边形GHCF中的一个内角相等时,求所有满足条件的DQ的长.

    发布:2025/5/24 18:0:1组卷:789引用:2难度:0.1
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正