综合与实践
问题情境:“综合与实践”课上,老师提出如下问题:将图1中的矩形纸片沿对角线剪开,得到两个全等的三角形纸片,表示为△ABC和△DFE,其中∠ACB=∠DEF=90°,∠A=∠D,将△ABC和△DFE按图2所示方式摆放,其中点B与点F重合(标记为点B).当∠ABE=∠A时,延长DE交AC于点G,试判断四边形BCGE的形状,并说明理由.

数学思考:(1)请你解答老师提出的问题;
深入探究:(2)老师将图2中的△DBE绕点B逆时针方向旋转,使点E落在△ABC内部,并让同学们提出新的问题.
①“善思小组”提出问题:如图3,当∠ABE=∠BAC时,过点A作AM⊥BE交BE的延长线于点M,BM与AC交于点N.试猜想线段AM和BE的数量关系,并加以证明.请你解答此问题;
②“智慧小组”提出问题:如图4,当∠CBE=∠BAC时,过点A作AH⊥DE于点H,若BC=9,AC=12,求AH的长.请你思考此问题,直接写出结果.
【考点】四边形综合题.
【答案】(1)结论:四边形BCGE为正方形.理由见解析部分;
(2)①结论:AM=BE.理由见解析部分;
②.
(2)①结论:AM=BE.理由见解析部分;
②
27
5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/14 8:0:9组卷:4016引用:19难度:0.1
相似题
-
1.如图,在菱形ABCD中,AB=10,sinB=
,点E从点B出发沿折线B-C-D向终点D运动.过点E作点E所在的边(BC或CD)的垂线,交菱形其它的边于点F,在EF的右侧作矩形EFGH.35
(1)如图1,点G在AC上.求证:FA=FG.
(2)若EF=FG,当EF过AC中点时,求AG的长.
(3)已知FG=8,设点E的运动路程为s.当s满足什么条件时,以G,C,H为顶点的三角形与△BEF相似(包括全等)?发布:2025/1/28 8:0:2组卷:2059引用:3难度:0.1 -
2.如图,在菱形ABCD中,∠ABC=60°,AB=2.过点A作对角线BD的平行线与边CD的延长线相交于点E.P为边BD上的一个动点(不与端点B,D重合),连接PA,PE,AC.
(1)求证:四边形ABDE是平行四边形;
(2)求四边形ABDE的周长和面积;
(3)记△ABP的周长和面积分别为C1和S1,△PDE的周长和面积分别为C2和S2,在点P的运动过程中,试探究下列两个式子的值或范围:①C1+C2,②S1+S2,如果是定值的,请直接写出这个定值;如果不是定值的,请直接写出它的取值范围.发布:2025/1/28 8:0:2组卷:577引用:1难度:0.2 -
3.如图,菱形ABCD中,AB=5,连接BD,sin∠ABD=
,点P是射线BC上一点(不与点B重合),AP与对角线BD交于点E,连接EC.55
(1)求证:AE=CE;
(2)当点P在线段BC上时,设BP=n(0<n<5),求△PEC的面积;(用含n的代数式表示)
(3)当点P在线段BC的延长线上时,若△PEC是直角三角形,请直接写出BP的长.发布:2025/1/28 8:0:2组卷:255引用:1难度:0.1