魏晋时期,伟大数学家刘徽利用如图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”证明了勾股定理,若图中BF=2,CF=4,则AE的长为610610.
10
10
【考点】勾股定理的证明.
【答案】6
10
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/23 19:0:2组卷:801引用:5难度:0.5
相似题
-
1.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则tanθ的值为( )
发布:2025/5/23 22:0:2组卷:95引用:2难度:0.6 -
2.如图是中国古代数学家赵爽用来证明勾股定理的弦图示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD,连结EG并延长交CD于点P.若AE=3EF=3,则DP的长为( )
发布:2025/5/22 3:30:2组卷:582引用:4难度:0.4 -
3.我国古代数学家赵爽巧妙地用“弦图”证明了勾股定理,标志着中国古代的数学成就.如图,若弦图中四个全等的直角三角形的两条直角边长分别为3和4,则中间小正方形的对角线长为 .
发布:2025/5/23 3:30:1组卷:151引用:1难度:0.8