试卷征集
加入会员
操作视频

对于点C和给定的⊙O,给出如下定义:若⊙O上存在点B,使点C绕点B旋转90°的对应点A在⊙O上,此时△ABC是以点B为直角顶点的等腰直角三角形,则称点C为⊙O的“等直顶点”.
若O是坐标原点,⊙O的半径为2,
(1)在点P(0,0),Q(2,0),R(5,0),S(2
2
,0)中,可以作为⊙O的“等直顶点”的是
Q和S
Q和S

(2)若点P为⊙O的“等直顶点”,且点P在直线y=x上,求点P的横坐标的取值范围;
(3)设⊙C的圆心C在x轴上,半径为2,若直线y=x上存在点D,使得半径为1的⊙D上存在点P是⊙C的“等直顶点”,求圆心C的横坐标的取值范围;
(4)直线y=
4
3
x+4分别和两坐标轴交于E,F两点,若线段EF上的所有点均为⊙O的“等直顶点”,求⊙O的半径的最大值与最小值.

【考点】圆的综合题
【答案】Q和S
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/13 13:0:1组卷:238引用:2难度:0.1
相似题
  • 1.等腰三角形AFG中AF=AG,且内接于圆O,D、E为边FG上两点(D在F、E之间),分别延长AD、AE交圆O于B、C两点(如图1),记∠BAF=α,∠AFG=β.
    (1)求∠ACB的大小(用α,β表示);
    (2)连接CF,交AB于H(如图2).若β=45°,且BC×EF=AE×CF.求证:∠AHC=2∠BAC;
    (3)在(2)的条件下,取CH中点M,连接OM、GM(如图3),若∠OGM=2α-45°,
    ①求证:GM∥BC,GM=
    1
    2
    BC;
    ②请直接写出
    OM
    MC
    的值.

    发布:2025/6/7 16:0:2组卷:1490引用:8难度:0.1
  • 2.已知,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是优弧CBD上的任意一点,AH=2,CH=4.

    (1)如图1,
    ①求⊙O的半径;
    ②求sin∠CMD的值.
    (2)如图2,直线BM交直线CD于点E,直线MH交⊙O于点N,连结BN交CD于点F,求HE•FH的值.

    发布:2025/6/7 7:0:1组卷:476引用:2难度:0.3
  • 3.如图,在Rt△ABC中,∠ACB=90°,过点C作CD⊥AB于点D,O为BC的中点,E是AC的中点,连接OE交CD于点F.
    (1)若∠BCD=30°,BC=20,求BD的长;
    (2)若∠BCD=30°,求证:以BC为直径的圆与DE相切;
    (3)求证:2CE2=AB•EF.

    发布:2025/6/8 19:30:1组卷:18引用:1难度:0.4
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正