阅读下列材料:
1×2=13×(1×2×3-0×1×2);
2×3=13×(2×3×4-1×2×3);
3×4=13×(3×4×5-2×3×4),
读完以上材料,请你完成下列问题:
(1)根据以上材料,第四个等式是:4×5=13×(4×5×6-3×4×5)13×(4×5×6-3×4×5),第n个等式是:n(n+1)=13×[n(n+1)(n+2)-(n-1)×n×(n+1)]13×[n(n+1)(n+2)-(n-1)×n×(n+1)];
(2)计算:1×2+2×3+3×4+…+n(n+1);(用含n的式子表示)
(3)计算:1×2×3+2×3×4+3×4×5+…+17×18×19.
1
×
2
=
1
3
×
(
1
×
2
×
3
-
0
×
1
×
2
)
2
×
3
=
1
3
×
(
2
×
3
×
4
-
1
×
2
×
3
)
3
×
4
=
1
3
×
(
3
×
4
×
5
-
2
×
3
×
4
)
1
3
×
(
4
×
5
×
6
-
3
×
4
×
5
)
1
3
×
(
4
×
5
×
6
-
3
×
4
×
5
)
1
3
×
[
n
(
n
+
1
)
(
n
+
2
)
-
(
n
-
1
)
×
n
×
(
n
+
1
)
]
1
3
×
[
n
(
n
+
1
)
(
n
+
2
)
-
(
n
-
1
)
×
n
×
(
n
+
1
)
]
【答案】;
1
3
×
(
4
×
5
×
6
-
3
×
4
×
5
)
1
3
×
[
n
(
n
+
1
)
(
n
+
2
)
-
(
n
-
1
)
×
n
×
(
n
+
1
)
]
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/18 13:0:1组卷:65引用:2难度:0.5