(1)问题提出:如图①,在矩形ABCD中,AB=1,BC=3,P是AD上一动点,则BP+12PD的最小值为33.
(2)问题探究:如图②,在正方形ABCD中,AB=3,点E是平面上一点,且CE=1,连接BE在BE上方作正方形BEMN,求BM的最大值.
(3)问题解决:为迎接2021年9月在西安举办的第14届全运会,打造体育历史文化名城,某小区对一正方形区域ABCD进行设计改造,方便大家锻炼运动.如图③,在正方形内设计等腰直角△CEF为健身运动区域,直角顶点E设计在草坪区域扇形MBN的弧MN上.设计铺设CF和DF这两条不同造价鹅卵石路,已知AB=40米,BM=102,∠CEF=90°,CE=EF,若铺设CF路段造价为每米200元,铺设DF路段的造价为每米100元,请求出铺设CF和DF两条路段的总费用的最小值.

3
1
2
3
3
2
【考点】圆的综合题.
【答案】
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/18 11:0:12组卷:164引用:1难度:0.3
相似题
-
1.在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时点Q从点B出发沿BC边向点C以每秒2cm的速度移动P、Q两点在分别到达B、C两点后就停止移动,设两点移动的时间为t秒,回答下列问题:
(1)如图1,当t为几秒时,△PBQ的面积等于5cm2?
(2)如图2,当t=秒时,试判断△DPQ的形状,并说明理由;32
(3)如图3,以Q为圆心,PQ为半径作⊙Q.
①在运动过程中,是否存在这样的t值,使⊙Q正好与四边形DPQC的一边(或边所在的直线)相切?若存在,求出t值;若不存在,请说明理由;
②若⊙Q与四边形DPQC有三个公共点,请直接写出t的取值范围.发布:2025/6/22 20:0:1组卷:554引用:8难度:0.3 -
2.如图,已知直线
与两坐标轴分别交于A、B两点,⊙C的圆心坐标为(-2,0),半径为2,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积S的取值范围是y=-3x+23发布:2025/6/22 19:30:1组卷:340引用:3难度:0.7 -
3.如图,以点P(-1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=2
,将△ABC绕点P旋转180°,得到△MCB.3
(1)求B、C两点的坐标;
(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;
(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.发布:2025/6/23 2:0:1组卷:676引用:30难度:0.1