如图,在Rt△ABC中,∠C=90°,BC=8,AC=6,动点P从点A开始,沿边AC向点C以每秒1个单位长度的速度运动,动点D从点A开始,沿边AB向点B以每秒53个单位长度的速度运动,且恰好能始终保持连结两动点的直线PD⊥AC,动点Q从点C开始,沿边CB向点B以每秒2个单位长度的速度运动,连结PQ.点P,D,Q分别从点A,C同时出发,当其中一点到达端点时,另两个点也随之停止运动,设运动时间为t秒(t≥0).
(1)当t=3时,求PD的长?
(2)当t为何值时,四边形BQPD的面积为△ABC面积的一半?
(3)是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由.
5
3
【考点】四边形综合题.
【答案】(1)PD的长为4;
(2)当t=9-3时,四边形BQPD的面积为三角形ABC面积的一半;
(3)t的值为.
(2)当t=9-3
5
(3)t的值为
12
5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:188引用:3难度:0.3
相似题
-
1.如图,平面直角坐标系中O是原点,▱OABC的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:
①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=203453
其中正确的结论是(填写所有正确结论的序号).发布:2025/6/16 11:0:1组卷:3337引用:5难度:0.2 -
2.(1)[问题背景]如图1,在△ABC中,AB=AC,∠BAC=α°,D为BC边上一点(不与点B、C重合)将线段AD绕点A逆时针旋转α°得到AE,连接EC,则∠BCE=°(用含α的式子表示),线段BC,DC,EC之间满足的等量关系式为;
(2)[探究证明]如图2,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B、C重合)将线段AD绕点A逆时针旋转90°得到线段AE,连接DE,求证:BD2+CD2=2AD2;
(3)[拓展延伸]如图3,在四边形ABCF中,∠ABC=∠ACB=∠AFC=45°,BF=3,CF=1.将△ABF绕点A逆时针旋转90°,试画出旋转后的图形,并求出AF的长度.(不要求尺规作图)发布:2025/6/16 14:30:2组卷:1152引用:2难度:0.1 -
3.(1)如图①,把三角形纸片ABC沿DE折叠,当点A落在四边形BCED的内部时,若∠B=50°,∠C=85°,求∠1+∠2的值;
(2)如图②,如果把△ABC纸片沿DE折叠,使点A落在四边形BCED的外部A′的位置,此时∠A与∠1、∠2之间存在什么样的等量关系?并说明理由;
(3)如果把四边形ABCD沿EF折叠,使点A、D落在四边形BCFE的内部A′、D′的位置,如图③,你能求出∠A、∠D与∠1、∠2之间的等量关系吗?(直接写出关系式即可)发布:2025/6/16 21:0:1组卷:229引用:2难度:0.4