折纸是我国传统的民间艺术,通过折纸不仅可以得到许多美丽的图形,折纸的过程还蕴含着丰富的数学知识,在综合与实践课上,老师让同学们以“正方形的折叠”为主题开展了数学活动.
(1)操作判断:
在AD上选一点P,沿BP折叠,使点A落在正方形内部的点M处,把纸片展平,过M作EF∥BC交AB、CD、BP于点E、F、N,连接PM并延长交CD于点Q,连接BQ,如图①,当E为AB中点时,△PMN是 等边等边三角形.∠QBC=15°15°.
(2)迁移探究:
如图②,若BE=5,且ME•MF=10,求正方形ABCD的边长.
(3)拓展应用:
如图③,若MNBC=1n(n>1),直接写出CQBC的值为n-1n+1n-1n+1.

MN
BC
1
n
CQ
BC
n
-
1
n
+
1
n
-
1
n
+
1
【考点】相似形综合题.
【答案】等边;15°;
n
-
1
n
+
1
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/15 8:0:8组卷:461引用:1难度:0.5
相似题
-
1.已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,E是上底AD的中点,P是腰AB上一动点,连接PE并延长,交射线CD于点M,作EF⊥PE,交下底BC于点F,连接MF交AD于点N,连接PF,AB=AD=4,BC=6,点A、P之间的距离为x,△PEF的面积为y.
(1)当点F与点C重合时,求x的值;
(2)求y关于x的函数解析式,并写出它的定义域;
(3)当∠CMF=∠PFE时,求△PEF的面积.发布:2025/1/28 8:0:2组卷:240引用:1难度:0.5 -
2.【感知】如图①,在Rt△ABC中,∠ACB=90°,D、E分别是边AC、BC的中点,连接DE.则△CDE与△CAB的面积比为.
【探究】将图①的△CDE绕着点C按顺时针方向旋转一定角度,使点E落在△ABC内部,连接AD、BE,并延长BE分别交AC、AD于点O、F,其它条件不变,如图②.
(1)求证:△ACD∽△BCE.
(2)求证:AD⊥BF.
【应用】将图②的△CDE绕着点C按顺时针方向旋转,使点D恰好落在边BC的延长线上,连接AD、BE,BE的延长线交AD于点F,其它条件不变,如图③,若AC=4,BC=3,则BF的长为.发布:2025/1/28 8:0:2组卷:302引用:1难度:0.1 -
3.【阅读】“关联”是解决数学问题的重要思维方式,角平分线的有关联想就有很多……
(1)【问题提出】如图①,PC是△PAB的角平分线,求证.PAPB=ACBC小明思路:关联“平行线、等腰三角形”,过点B作BD∥PA,交PC的延长线于点D,利用“三角形相似”.
小红思路:关联“角平分线上的点到角的两边的距离相等”,过点C分别作CD⊥PA交PA于点D,作CE⊥PB交PB于点E,利用“等面积法”.
(2)【理解应用】填空:如图②,Rt△ABC中,∠B=90°,BC=3,AB=4,CD平分∠ACB交AB于点D,则BD长度为 ;
(3)【深度思考】如图③,在Rt△ABC中,∠BAC=90°,D是边BC上一点,连接AD,将△ACD沿AD所在直线折叠点C恰好落在边AB上的E点处.若AC=1,AB=2,则DE的长为 ;
(4)【拓展升华】如图④,△ABC中,AB=6,AC=4,AD为∠BAC的角平分线,AD的垂直平分线EF交BC延长线于F,连接AF,当BD=3时,AF的长为 .发布:2025/1/28 8:0:2组卷:353引用:1难度:0.1