【图形定义】
有一条高线相等的两个三角形称为等高三角形.

例如:如图1,在△ABC和△A′B′C′中,AD,A′D′分别是BC和B′C′边上的高线,且AD=A′D′,则△ABC和△A′B′C′是等高三角形.
【性质探究】
如图1,用S△ABC,S△A′B′C′分别表示△ABC和△A′B′C′的面积.
则S△ABC=12BC⋅AD,S△A′B′C′=12B′C′⋅A′D′.
∵AD=A′D′,
∴S△ABC:S△A′B′C′=BC:B′C′.
【性质应用】
(1)如图2,D是△ABC的边BC上的一点.若BD=3,DC=4,则S△ABD:S△ADC=3:43:4.
(2)如图3,在△ABC中,D,E分别是BC和AB边上的点.若BE:AB=1:2,CD:BC=1:3,S△ABC=1,则S△BEC=1212,S△CDE=1616.
【提示】∵△BEC和△ABC是等高三角形,∴S△BEC:S△ABC=BE:AB=1:2.∴S△BEC=12S△ABC=12×1=12.∵△CDE和△BEC是等高三角形,∴S△CDE:S△BEC=CD:BC=1:3.∴S△CDE=13S△BEC=13×12=16.
(3)如图3,在△ABC中,D,E分别是BC和AB边上的点,若BE:AB=1:m,CD:BC=1:n,S△ABC=a,则S△CDE=amnamn.
【提示】∵△BEC和△ABC是等高三角形,∴S△BEC:S△ABC=BE:AB=1:m.∴S△BEC=1mS△ABC=1m×a=am.∵△CDE和△BEC是等高三角形,∴S△CDE:S△BEC=CD:BC=1:n.∴S△CDE=1nS△BEC=1n×am=amn.
S
△
ABC
=
1
2
BC
⋅
AD
S
△
A
′
B
′
C
′
=
1
2
B
′
C
′
⋅
A
′
D
′
1
2
1
2
1
6
1
6
S
△
BEC
=
1
2
S
△
ABC
=
1
2
×
1
=
1
2
S
△
CDE
=
1
3
S
△
BEC
=
1
3
×
1
2
=
1
6
a
mn
a
mn
S
△
BEC
=
1
m
S
△
ABC
=
1
m
×
a
=
a
m
S
△
CDE
=
1
n
S
△
BEC
=
1
n
×
a
m
=
a
mn
【考点】三角形综合题.
【答案】3:4;;;
1
2
1
6
a
mn
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/15 5:0:1组卷:49引用:1难度:0.5
相似题
-
1.如图,三角形ABO的三个顶点的坐标分别为O(0,0),A(5,0),B(2,4).
(1)求三角形OAB的面积;
(2)若O,B两点的位置不变,点M在x轴上,则点M在什么位置时,三角形OBM的面积是三角形OAB的面积的2倍?
(3)若O,A两点的位置不变,点N由点B向上或向下平移得到,则点N在什么位置时,三角形OAN的面积是三角形OAB的面积的2倍?发布:2025/6/17 6:30:2组卷:331引用:2难度:0.3 -
2.已知a,b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x.
(1)直接写出c及x的取值范围;
(2)若x是大于14的偶数.
①求c的长;
②判断△ABC的形状.发布:2025/6/16 22:30:4组卷:117引用:2难度:0.4 -
3.如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.
(1)求证:AD=BE;
(2)求∠AEB的度数;
(3)探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM⊥DE于点M,连接BE.
①∠AEB的度数为 °;
②线段DM,AE,BE之间的数量关系为 .(直接写出答案,不需要说明理由)发布:2025/6/17 6:0:2组卷:365引用:3难度:0.6