如图1、图2,在△ABC中,AB=AC=5,BC=8,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB-BN匀速移动,到达点N时停止;而点Q在边AC上随点P移动,且始终保持∠APQ=∠B.

(1)若点P在MB上.
①求证:APAB=AQAC;
②当PQ将△ABC的面积分成上下4:5两部分时,求MP的长.
(2)设点P移动的路程为x.
①当x=5时,求CQ的长;
②当PQ与△ABC的边平行时,请直接写出x的取值范围.
AP
AB
=
AQ
AC
【考点】相似形综合题.
【答案】(1)①证明见解析过程;
②;
(2)①;
②0≤x<3或.
②
MP
=
4
3
(2)①
CQ
=
12
5
②0≤x<3或
x
=
49
8
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/11 1:0:9组卷:56引用:3难度:0.5
相似题
-
1.如图,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D、E(点A、E位于点B的两侧),满足BP=BE,连接AP、CE.
(1)求证:△ABP≌△CBE;
(2)连接AD、BD,BD与AP相交于点F.如图2.
①当=2时,求证:AP⊥BD;BCBP
②当=n(n>1)时,设△PAD的面积为S1,△PCE的面积为S2,求BCBP的值.S1S2发布:2025/6/18 11:30:2组卷:1185引用:6难度:0.3 -
2.在矩形ABCD中,AD=3,CD=4,点E在边CD上,且DE=1.
感知:如图①,连接AE,过点E作EF⊥AE,交BC于点F,连接AF,易证:△ADE≌△ECF(不需要证明);
探究:如图②,点P在矩形ABCD的边AD上(点P不与点A、D重合),连接PE,过点E作EF⊥PE,交BC于点F,连接PF.求证:△PDE∽△ECF;
应用:如图③,若EF交AB边于点F,其他条件不变,且△PEF的面积是3,则AP的长为发布:2025/6/16 19:30:1组卷:681引用:3难度:0.1 -
3.如图,AD、BE是△ABC的两条高,过点D作DF⊥AB,垂足为F,FD交BE于M,FD、AC的延长线交于点N.
(1)求证:△BFM∽△NFA;
(2)试探究线段FM、DF、FN之间的数量关系,并证明你的结论;
(3)若AC=BC,DN=12,ME:EN=1:2,求线段AC的长.发布:2025/6/16 11:30:2组卷:851引用:7难度:0.3