在数学探究课上,老师出示了这样的探究问题,请你一起来探究:
已知:C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边三角形ACE和BCD,连接AD、BE交于点P.
(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系是:AD=BEAD=BE.
(2)如图2,当点C在直线AB外,且∠ACB<120°,上面的结论是否还成立?若成立请证明,不成立说明理由.此时∠APE是否随着∠ACB的大小发生变化,若变化写出变化规律,若不变,请求出∠APE的度数.
(3)如图3,在(2)的条件下,以AB为边在AB另一侧作等边三角形△ABF,连接AD、BE和CF交于点P,求证:PB+PC+PA=BE.

【考点】全等三角形的判定与性质;等边三角形的判定与性质.
【答案】AD=BE
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/19 21:0:2组卷:724引用:5难度:0.5
相似题
-
1.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在线段BC上,且AE=CF.
求证:∠AEB=∠CFB.发布:2025/1/24 8:0:2组卷:454引用:4难度:0.7 -
2.如图,在△ABC中,∠BAC=90°,延长BA到点D,使AD=
AB,点E、F分别为BC、AC的中点,请你在图中找出一组相等关系,使其满足上述所有条件,并加以证明.12发布:2025/1/24 8:0:2组卷:4引用:1难度:0.5 -
3.如图,在Rt△ABC中,∠C=∠BED=90°,且CD=DE,AD=BD,则∠B=.
发布:2025/1/28 8:0:2组卷:10引用:0难度:0.7