我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,两边交点为勾股顶点.

●特例感知
①等腰直角三角形 是是勾股高三角形(请填写“是”或者“不是”);
②如图1,已知△ABC为勾股高三角形,其中C为勾股顶点,CD是AB边上的高.若BD=2AD=2,试求线段CD的长度.
●深入探究
如图2,已知△ABC为勾股高三角形,其中C为勾股顶点且CA>CB,CD是AB边上的高.试探究线段AD与CB的数量关系,并给予证明;
●推广应用
如图3,等腰△ABC为勾股高三角形,其中AB=AC>BC,CD为AB边上的高,过点D向BC边引平行线与AC边交于点E.若CE=a,试求线段DE的长度.
【考点】三角形综合题.
【答案】是
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/3 8:0:9组卷:3868引用:20难度:0.3
相似题
-
1.(1)阅读理解:
如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是;
(2)问题解决:如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.发布:2025/6/17 11:0:1组卷:624引用:7难度:0.4 -
2.把一副三角板按如图1摆放(点C与点E重合),点B,C(E),F在同一直线上.∠ACB=∠DFE=90°,∠A=30°,∠DEF=45°,BC=EF=8cm,点P是线段AB的中点.△DEF从图1的位置出发,以4cm/s的速度沿CB方向匀速运动,如图2,DE与AC相交于点Q,连接PQ.当点D运动到AC边上时,△DEF停止运动.设运动时间为t(s).
(1)当t=1时,求AQ的长;
(2)当t为何值时,点A在线段PQ的垂直平分线上?
(3)当t为何值时,△APQ是直角三角形?发布:2025/6/17 21:30:1组卷:286引用:3难度:0.1 -
3.已知,如图,在平面直角坐标系中,A为y轴正半轴上一点,B为x轴负半轴上一点.
(1)若BP平分∠ABO,AP平分∠BAO的外角,求∠P.
(2)如图2,C为x轴正半轴上一点,BP平分∠ABC,且P在AC的垂直平分线上.若∠ABC=2∠ACB,求证:AP∥BC.
(3)在第(2)问的条件下,D是AB上一点,E是x轴正半轴上一点,连AE交DP于H.当∠DHE与∠ABE满足什么条件时,DP=AE,请说明理由.发布:2025/6/17 19:30:1组卷:75引用:1难度:0.3