【问题情境】
如图1,点E为正方形ABCD内一点,∠AEB=90°,将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBE′(点A的对应点为点C).延长AE交CE′于点F,连接DE.
(1)试判断四边形BE'FE的形状,并说明理由;
【解决问题】
(2)若CF=3,BE=3CF,请求出正方形ABCD的面积;
【猜想证明】
(3)如图2,若DA=DE,请猜想线段CF与FE'的数量关系并加以证明.

【考点】四边形综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/31 1:0:8组卷:127引用:3难度:0.3
相似题
-
1.将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(3,0),点C(0,6),点P在矩形的边OC上,折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且∠OPQ=30°,点O的对应点O'落在第一象限.设O′Q=t.
(Ⅰ)如图①,当t=1时,求∠O′QA的大小和点O′的坐标;
(Ⅱ)如图②,若折叠后重合部分为四边形,O′Q,O'P分别与边AB相交于点E,F,试用含有t的式子表示重叠部分的面积S,并写出t的取值范围;
(Ⅲ)当折痕PQ恰好过点A时,求折叠后重合部分的面积 .发布:2025/5/23 17:0:1组卷:311引用:1难度:0.1 -
2.如图,在△ABC中,∠ABC=30°,AB=AC,点O为BC的中点,点D是线段OC上的动点(点D不与点O,C重合),将△ACD沿AD折叠得到△AED,连接BE.
(1)当AE⊥BC时,∠AEB=°;
(2)探究∠AEB与∠CAD之间的数量关系,并给出证明;
(3)设AC=4,△ACD的面积为x,以AD为边长的正方形的面积为y,求y关于x的函数解析式.发布:2025/5/23 17:30:1组卷:977引用:7难度:0.5 -
3.【基础巩固】(1)如图1,在△ABC中,D,E分别在AB,BC上,∠BDE=∠C,求证:BD⋅BA=BE⋅BC.
【尝试应用】(2)如图2,在△ABC中,D,E,F分别在AB,BC,CA上,四边形ADEF为平行四边形,∠DFE=∠C,AD=4,BD=2,求AC的长.
【拓展提高】(3)如图3,平行四边形ABCD的周长为10,E,G分别在AC,AD上,四边形ECFG为平行四边形,CE=4AE,∠B=2∠CEF=2∠AGE,求EF的长.发布:2025/5/23 17:30:1组卷:334引用:1难度:0.3