在平面直角坐标系xOy中,若点P和点P1关于y轴对称,点P1和点P2关于直线l对称,则称点P2是点P关于y轴、直线l的“二次对称点”.
(1)已知点A(3,5),直线l是经过(0,2)且平行于x轴的一条直线,则点A″为点A关于y轴,直线l的“二次对称点”,则点A″的坐标为 (-3,-1)(-3,-1);
(2)如图1,正方形ABCD的顶点坐标分别是A(0,1),B(0,3),C(2,3),D(2,1);点E的坐标为(1,1),若点M为正方形ABCD(不含边界)内一点,点M′为点M关于y轴,直线OE的“二次对称点”,则点M′的横坐标x的取值范围是 0<x<20<x<2;
(3)如图2,T(t,0)(t≥0)是x轴上的动点,线段RS经过点T,且点R、点S的坐标分别是R(t,1),S(t,-1),直线l经过(0,1)且与x轴夹角为60°,在点T的运动过程中,若线段RS上存在点N,使得点N′是点N关于y轴,直线l的“二次对称点”,且点N′在y轴上,则点N′纵坐标y的取值范围是 -3≤yN′≤1-3≤yN′≤1.

【考点】四边形综合题.
【答案】(-3,-1);0<x<2;-3≤yN′≤1
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/19 17:0:4组卷:74引用:1难度:0.1
相似题
-
1.如图,平面直角坐标系中O是原点,▱OABC的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:
①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=203453
其中正确的结论是(填写所有正确结论的序号).发布:2025/6/16 11:0:1组卷:3337引用:5难度:0.2 -
2.如图,四边形ABCD中,AD∥BC,CD=10,AB=2
,动点P沿着A-D运动,同时点Q从点D沿着D-C-B运动,它们同时到达终点,设Q点运动的路程为x,DP的长度为y,且y=-17x+18.34
(1)求AD,BC的长.
(2)设△PQD的面积为S,在P,Q的运动过程中,S是否存在最大值,若存在,求出S的最大值;若不存在,请说明理由.
(3)当PQ与四边形ABCD其中一边垂直时,求所有满足要求的x的值.发布:2025/6/16 4:0:2组卷:414引用:2难度:0.4 -
3.如图,在Rt△ABC中,∠C=90°,AC=10,∠A=60°.点P从点B出发沿BA方向以每秒2个单位长度的速度向点A匀速运动,同时点Q从点A出发沿AC方向以每秒1个单位长度的速度向点C匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点P、Q运动的时间是t秒.过点P作PM⊥BC于点M,连接PQ、QM.
(1)请用含有t的式子填空:AQ=,AP=,PM=;
(2)是否存在某一时刻使四边形AQMP为菱形?如果存在,求出相应的t值;如果不存在,说明理由;
(3)当t为何值时,△PQM为直角三角形?请说明理由.发布:2025/6/16 3:0:1组卷:740引用:6难度:0.4