【问题呈现】
如图1,△ABC和△ADE都是等边三角形,连接BD,CE.易知BDCE=11.
【类比探究】
如图2,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°.连接BD,CE.则BDCE=2222.
【拓展提升】
如图3,△ABC和△ADE都是直角三角形,∠ABC=∠ADE=90°,且ABBC=ADDE=34,连接BD,CE.

(1)求BDCE的值;
(2)延长CE交BD于点F,交AB于点G.求sin∠BFC的值.
BD
CE
BD
CE
2
2
2
2
AB
BC
=
AD
DE
=
3
4
BD
CE
【考点】相似形综合题.
【答案】1;
2
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/26 8:0:9组卷:1452引用:4难度:0.1
相似题
-
1.在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.
(1)若四边形ABCD为正方形.
①如图1,请直接写出AE与DF的数量关系;
②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF的数量关系并说明理由;
(2)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',连接AE',DF',请在图3中画出草图,并直接写出AE'与DF'的数量关系.发布:2025/5/24 6:30:2组卷:1835引用:5难度:0.5 -
2.如图,矩形ABCD中AB=10,AD=6,点E为AB边上的动点(不与A,B重合),把△ADE沿DE翻折,点A的对应点为G,延长EG交直线DC于点F,再把△BEH沿EH翻折,使点B的对应点T落在EF上,折痕EH交直线BC于点H.
(1)求证:△GDE∽△TEH;
(2)若点G落在矩形ABCD的对称轴上,求AE的长;
(3)是否存在点T落在DC边上?若存在,求出此时AE的长度,若不存在,请说明理由.发布:2025/5/24 4:30:1组卷:599引用:3难度:0.3 -
3.在△ABC中,AB=AC,P是BC边上一点,PD∥AB,交AC于点D.
(1)如图1,连接PA,若∠APD=∠B.
①求证:AB2=PA•BC;
②过点D作DF⊥PA于F,求的值;PFPC
(2)如图2,过P作PG∥AC,交AB于点G,点Q为△ABC外一点,且P,Q关于直线DG对称,连接QA,QC,求证:∠B+∠Q=180°.发布:2025/5/24 7:0:1组卷:93引用:2难度:0.1