如图,在△ABC中,AB=AC,∠BAC=50°,AD⊥BC于点D,点E为边AD上一点,以AE为腰在直线AD左侧作等腰三角形AEF,使AF=AE,∠EAF=50°,EF与AB交于点G,连接BE,BF.
(1)求∠FAG的度数;
(2)请判断BE与BF是否相等?并说明理由;
(3)点M为BE上一点,连接DM,GM,CE,若GM∥BF,DM∥CE,请直接写出∠DMG的度数.
【答案】(1)25°;
(2)相等,理由见解答;
(3)130°.
(2)相等,理由见解答;
(3)130°.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/5 8:0:9组卷:585引用:3难度:0.5
相似题
-
1.如图,在△ABC中,∠BAC=90°,延长BA到点D,使AD=
AB,点E、F分别为BC、AC的中点,请你在图中找出一组相等关系,使其满足上述所有条件,并加以证明.12发布:2025/1/24 8:0:2组卷:4引用:1难度:0.5 -
2.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在线段BC上,且AE=CF.
求证:∠AEB=∠CFB.发布:2025/1/24 8:0:2组卷:454引用:4难度:0.7 -
3.如图,在Rt△ABC中,∠C=∠BED=90°,且CD=DE,AD=BD,则∠B=.
发布:2025/1/28 8:0:2组卷:10引用:0难度:0.7