如图1,DE∥AB,∠BAF+∠CDE=180°.
(1)求证:∠C=∠CAF;
(2)如图2,连接BE,若∠C=50°,∠CBE=30°,求∠AEB的度数;
(3)如图3,在(2)的条件下,∠ABG=∠ABE,∠BAG=∠CAF,若∠EBA:∠EAB=2:3,求证:AG⊥BG.
【考点】四边形综合题.
【答案】(1)证明见解析;
(2)80°;
(3)证明见解析.
(2)80°;
(3)证明见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/3 8:0:9组卷:9引用:1难度:0.2
相似题
-
1.如图1,BD是菱形ABCD的对角线,点E是边CD上一点,将△BCE沿着BE翻折,点C的对应点F恰好落在AD的延长线上,且AB=5.
(1)求证:FB平分∠AFE;
(2)如图2,若点F落在AD上.
①猜想∠ABF与∠DBE之间的数量关系,并证明你的结论;
②若,求证:EC=3DE.DFFB=23发布:2025/6/9 14:30:1组卷:155引用:3难度:0.3 -
2.(1)如图1,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,对角线BD=8,求四边形ABCD的面积;
(2)如图2,园艺设计师想在正六边形草坪一角∠BOC内改建一个小型的儿童游乐场OMAN.其中OA平分∠BOC,OA=100米,∠BOC=120°,点M,N分别在射线OB和OC上,且∠MAN=90°,为了尽可能的少破坏草坪,要使游乐场OMAN面积最小,你认为园林规划局的想法能实现吗?若能,请求出游乐场OMAN面积的最小值;若不能,请说明理由.发布:2025/6/9 15:0:1组卷:243引用:2难度:0.2 -
3.如图,在Rt△ABC中,AC=BC=4,∠ACB=90°,正方形BDEF的边长为2,将正方形BDEF绕点B旋转一周,连接AE、BE、CD.
(1)请判断线段AE和CD的数量关系,并说明理由;
(2)当A、E、F三点在同一直线上时,求CD的长;
(3)设AE的中点为M,连接FM,试求线段FM长的取值范围.发布:2025/6/9 15:0:1组卷:209引用:1难度:0.1