试卷征集
加入会员
操作视频

设a,b是实数,定义@的一种运算如下:a@b=(a+b)2-(a-b)2,则下列结论:
①若a@b=0,则a=0或b=0
②a@(b+c)=a@b+a@c
③不存在实数a,b,满足a@b=a2+5b2
④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.
其中正确的是(  )

【答案】C
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/21 8:0:9组卷:2120引用:10难度:0.7
相似题
  • 1.若实数x满足x2-x-1=0,则代数式x3-2x2+2023的值为

    发布:2025/6/9 3:30:1组卷:527引用:6难度:0.6
  • 2.如果一个自然数M能分解成a×A,其中a为一位数,A为两位数,且a与A的十位数字的和等于A的个位数字,则称数M为“和数”,将“和数”分解成M=a×A的过程,称为“和分解”,若a与A的十位数字的差等于A的个位数字,则称数M为“差数”,将“差数”分解成M=a×A的过程,称为“差分解”.
    例如:∵245=5×49,5+4=9,∴245为“和数”,
    ∵205=5×41,5-4=1,∴205为“差数”.
    又如∵195=3×65=5×39,3+6≠5,5+3≠9,且3-6≠5,5-3≠9,∴195既不是“和数”也不是“差数”.
    (1)判断236是“和数”吗?115是“差数”吗?并说明理由;
    (2)将一个“和数”M进行“和分解”,即
    M
    =
    m
    ×
    ab
    ,(1≤m≤8,1≤a≤8,2≤b≤9,m,a,b都为整数),将一个“差数”N进行“差分解”,即
    N
    =
    n
    ×
    ac
    ,(2≤n≤9,1≤a≤8,1≤c≤8,n,a,c都为整数),记P(M)=m+a+b,P(N)=n+a+c,若
    P
    M
    P
    N
    能被3整除,求出所有满足题意的M的值.

    发布:2025/6/9 1:30:1组卷:86引用:2难度:0.4
  • 3.若一个四位数M的百位数字与千位数字的差恰好是个位数字与十位数字的差的2倍,则将这个四位数M称作“星耀重外数”.
    例如:M=2456,∵4-2=2×(6-5),∴2456是“星耀重外数”;又如M=4325,∵3-4≠2×(5-2),∴4325不是“星耀重外数”.
    (1)判断2023,5522是否是“星耀重外数”,并说明理由;
    (2)一个“星耀重外数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,且满足2≤a≤b<c≤d≤9,记
    G
    M
    =
    49
    ac
    -
    2
    a
    +
    2
    d
    +
    23
    b
    -
    6
    24
    ,当G(M)是整数时,求出所有满足条件的M.

    发布:2025/6/9 16:0:2组卷:154引用:1难度:0.4
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正