对于△ABC及其边上的一点P,给出如下定义:如果点M1,M2,M3…Mn都在△ABC的边上,且PM1=PM2=PM3=…=PMn,那么称点M1,M2,M3…Mn为△ABC关于点P的等距点,线段PM1,PM2,PM3…PMn为△ABC关于点P的等距线段.

(1)如图1,△ABC中,∠A<90°,AB=AC,点P是BC的中点.
①点B,C 是是△ABC关于点P的等距点,线段PA,PB 不是不是△ABC关于点P的等距线段;(填“是”或“不是”)
②△ABC关于点P的两个等距点M1,M2分别在边AB,AC上,当相应的等距线段最短时,在图1中画出线段PM1,PM2;
(2)如图2,△ABC是边长为4的等边三角形,点P在BC上,点C,D是△ABC关于点P的等距点,且PC=1,直接写出线段DC的长;
(3)如图3,在Rt△ABC中,∠C=90°,∠B=30°,点P在BC上,△ABC关于点P的等距点恰好有两个,且其中一个是点C,若BC=a,直接写出PC长的取值范围(用含a的式子表示).
【考点】三角形综合题.
【答案】是;不是
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/9 8:0:9组卷:46引用:2难度:0.5
相似题
-
1.探索:如图①,以△ABC的边AB、AC为直角边,A为直角顶点,向外作等腰直角△ABD和等腰直角△ACE,连接BE、CD,试确定BE与CD有怎样数量关系,并说明理由.
应用:如图②,要测量池塘两岸B、E两地之间的距离,已知测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.发布:2025/6/20 10:0:1组卷:1305引用:4难度:0.1 -
2.如图,在△ABC中,∠ACB=90°,AC=3,BC=6.动点P从点A出发,沿AB以每秒
个单位长度的速度向终点B匀速运动,同时点Q从点B出发,沿折线BC-CA以每秒3个单位长度的速度向终点A匀速运动.当点P不与点A、B重合时,连结PQ,以PQ为斜边作Rt△PMQ,使∠PMQ=90°,tan∠MPQ=5,且点M、B在直线PQ的两侧.设点Q的运动时间为t秒.43
(1)用含t的代数式表示CQ的长.
(2)当PM⊥AB时,求PQ的长.
(3)当点M在△ABC内部时,求t的取值范围.
(4)当△ABC的边与△PMO的边所夹的角被线段PQ平分时,直接写出t的值.发布:2025/6/20 10:30:1组卷:82引用:1难度:0.1 -
3.如图1,在△ABC中,BO⊥AC于点O,AO=BO=3,OC=1,过点A作AH⊥BC于点H,交BO于点P.
(1)求线段OP的长度;
(2)连接OH,求证:∠OHP=45°;
(3)如图2,若点D为AB的中点,点M为线段BO延长线上一动点,连接MD,过点D作DN⊥DM交线段OA延长线于N点,则S△BDM-S△ADN的值是否发生改变,如改变,求出该值的变化范围;若不改变,求该式子的值.发布:2025/6/20 14:30:1组卷:3194引用:5难度:0.3