任意一个正整数都可以进行这样的分解:n=p×q(p、q是正整数,且p≤q),正整数的所有这种分解中,如果p、q两因数之差的绝对值最小,我们就称p×q是正整数的最佳分解.并规定:F(n)=pq.例如24可以分解成1×24,2×12,3×8或4×6,因为24-1>12-2>8-3>6-4,所以4×6是24的最佳分解,所以F(24)=23.
(1)求F(18)的值;
(2)如果一个两位正整数,t=10x+y(1≤x≤y≤9,x、y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差记为m,交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和记为n,若mn为4752,那么我们称这个数为“最美数”,求所有“最美数”;
(3)在(2)所得“最美数”中,求F(t)的最大值.
p
q
2
3
【考点】因式分解的应用.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/21 2:0:8组卷:1220引用:6难度:0.1