试卷征集
加入会员
操作视频

已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(-3,0),与y轴交于点C,点D(-2,-3)在抛物线上.
(1)求抛物线的解析式;
(2)求△ABC的面积;
(3)若抛物线上有一动点M,使
S
ABM
=
1
3
S
ABC
,求M点坐标.

【考点】二次函数综合题
【答案】(1)y=x2+2x-3;
(2)6;
(3)点M(-1
±
5
,1)或(-1
±
3
,-1).
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/11 7:0:8组卷:10引用:1难度:0.4
相似题
  • 1.在平面直角坐标系中,规定:抛物线y=a(x-h)2+k的关联直线为y=a(x-h)+k.例如抛物线y=2(x+1)2-3的关联直线为y=2(x+1)-3,即y=2x-1.
    (1)如图,对于抛物线y=-(x-1)2+3.
    ①该抛物线的顶点坐标为
    ,关联直线为

    ②求该抛物线与关联直线的交点.
    (2)点P是抛物线y=-(x-1)2+3上一点,过点P的直线PQ垂直于x轴,交抛物线y=-(x-1)2+3的关联直线于点Q,设点P的横坐标为m,线段PQ的长度为d(d>0),求d与m的函数关系式.

    发布:2025/6/20 10:30:1组卷:16引用:1难度:0.6
  • 2.在平面直角坐标系中,将函数y=-x2+2mx-m2+3m+1(m为常数)的图象记为G.
    (1)若抛物线经过(1,0)点,m的值为

    (2)当抛物线的顶点在第二象限时,求m的取值范围.
    (3)当图象G在x≤
    1
    2
    m的部分的最高点与x轴距离为1,求m的值.
    (4)已知△EFG三个顶点的坐标分别为E(0,2),F(0,-1),G(2,2).当抛物线在△EFG内部的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.

    发布:2025/6/20 10:30:1组卷:36引用:1难度:0.2
  • 3.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于点A(-1,0)、B(3,0),与y轴交于点C.
    (1)b=
    ,c=

    (2)若点D在该二次函数的图象上,且S△ABD=2S△ABC,求点D的坐标;
    (3)若点P是该二次函数图象上位于x轴上方的一点,且S△APC=S△APB,直接写出点P的坐标.

    发布:2025/6/20 10:30:1组卷:2740引用:10难度:0.3
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正