综合与实践:
问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9“平分一个已知角,”即:作一个已知角的平分线,如图2是欧几里得在《几何原本》中给出的角平分线作图法:在OA和OB上分别取点C和D,使得OC=OD,连接CD,以CD为边作等边三角形CDE,则OE就是∠AOB的平分线.请写出OE平分∠AOB的依据:SSSSSS;
类比迁移:(2)小明根据以上信息研究发现:△CDE不一定必须是等边三角形,只需CE=DE即可,他查阅资料;我国古代已经用角尺平分任意角,做法如下:如图3,在∠AOB的边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同刻度分别与点M,N重合,则过角尺顶点C的射线OC是∠AOB的平分线,请说明此做法的理由;
拓展实践:(3)小明将研究应用于实践.如图4,校园的两条小路AB和AC,汇聚形成了一个岔路口A,现在学校要在两条小路之间安装一盏路灯E,使得路灯照亮两条小路(两条小路一样亮),并且路灯E到岔路口A的距离和休息椅D到岔路口A的距离相等,试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规在对应的示意图5中作出路灯E的位置.(保留作图痕迹,不写作法)

【考点】三角形综合题.
【答案】SSS
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/22 8:0:8组卷:1089引用:9难度:0.3
相似题
-
1.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,动点P从点A出发沿线段AB以每秒3个单位长的速度运动至点B,过点P作PQ⊥AB交射线AC于点Q,设点P的运动时间为t秒(t>0).
(1)线段AQ的长为 ,线段PQ的长为 .(用含t的代数式表示)
(2)当△APQ与△ABC的周长的比为1:4时,求t的值.
(3)设△APQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式.发布:2025/6/25 4:0:1组卷:19引用:1难度:0.3 -
2.如图,在△ABC中,BC=5,AD⊥BC,BE⊥AC,AD,BE相交于点O,BD:CD=2:3,且AE=BE.
(1)求线段AO的长;
(2)动点P从点O出发,沿线段OA以每秒1个单位长度的速度向终点A运动,动点Q从点B出发沿射线BC以每秒4个单位长度的速度运动.P,Q两点同时出发,当点P到达A点时,P,Q两点同时停止运动.设点P的运动时间为t秒,△AOQ的面积为S,请用含t的式子表示S,并直接写出相应的t的取值范围;
(3)在(2)的条件下,点F是直线AC上的一点,且CF=BO,是否存在t值,使以点B,O,P为顶点的三角形与以点F,C,Q为顶点的三角形全等?若存在,请直接写出符合条件的t值;若不存在,请说明理由.发布:2025/6/25 5:0:1组卷:191引用:3难度:0.4 -
3.已知等腰直角△ABC的直角边AB=BC=10cm,点P,Q分别从A.C两点同时出发,均以1cm/s的相同速度做直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D.设P点运动时间为t,△PCQ的面积为S.
(1)求出S关于t的函数关系式.
(2)当点P在线段AB上时,点P运动几秒时,S△PCQ=S△ABC?14
(3)作PE⊥AC于点E,当点P.Q运动时,线段DE的长度是否改变?证明你的结论.发布:2025/6/23 23:0:10组卷:243引用:1难度:0.1