【问题背景】
学校数学兴趣小组在专题学习中遇到一个几何问题:如图1,已知等边△ABC,D是△ABC外一点,连接AD、CD、BD,若∠ADC=30°,AD=3,BD=5,求CD的长.
该小组在研究如图2中△OMN≌△OPQ中得到启示,于是作出图3,从而获得了以下的解题思路,请你帮忙完善解题过程.
解:如图3所示,以DC为边作等边△CDE,连接AE.
∵△ABC、△DCE是等边三角形,
∴BC=AC,DC=EC,∠BCA=∠DCE=60°.
∴∠BCA+∠ACD= ∠DCE∠DCE+∠ACD,
∴∠BCD=∠ACE,
∴△BCD≌△ACE(SAS)△BCD≌△ACE(SAS),
∴AE=BD=5.
∵∠ADC=30°,∠CDE=60°,
∴∠ADE=∠ADC+∠CDE=90°.
∵AD=3,
∴CD=DE= 44.
【尝试应用】
如图4,在△ABC中,∠ABC=45°,AB=2,BC=4,以AC为直角边,A为直角顶点作等腰直角△ACD,求BD的长.
【拓展创新】
如图5,在△ABC中,AB=4,AC=8,以BC为边向外作等腰△BCD,BD=CD,∠BDC=120°,连接AD,求AD的最大值.

2
【考点】三角形综合题.
【答案】∠DCE;△BCD≌△ACE(SAS);4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/3 8:0:9组卷:2643引用:3难度:0.3
相似题
-
1.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,动点P从点A出发沿线段AB以每秒3个单位长的速度运动至点B,过点P作PQ⊥AB交射线AC于点Q,设点P的运动时间为t秒(t>0).
(1)线段AQ的长为 ,线段PQ的长为 .(用含t的代数式表示)
(2)当△APQ与△ABC的周长的比为1:4时,求t的值.
(3)设△APQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式.发布:2025/6/25 4:0:1组卷:19引用:1难度:0.3 -
2.如图,在△ABC中,BC=5,AD⊥BC,BE⊥AC,AD,BE相交于点O,BD:CD=2:3,且AE=BE.
(1)求线段AO的长;
(2)动点P从点O出发,沿线段OA以每秒1个单位长度的速度向终点A运动,动点Q从点B出发沿射线BC以每秒4个单位长度的速度运动.P,Q两点同时出发,当点P到达A点时,P,Q两点同时停止运动.设点P的运动时间为t秒,△AOQ的面积为S,请用含t的式子表示S,并直接写出相应的t的取值范围;
(3)在(2)的条件下,点F是直线AC上的一点,且CF=BO,是否存在t值,使以点B,O,P为顶点的三角形与以点F,C,Q为顶点的三角形全等?若存在,请直接写出符合条件的t值;若不存在,请说明理由.发布:2025/6/25 5:0:1组卷:191引用:3难度:0.4 -
3.已知等腰直角△ABC的直角边AB=BC=10cm,点P,Q分别从A.C两点同时出发,均以1cm/s的相同速度做直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D.设P点运动时间为t,△PCQ的面积为S.
(1)求出S关于t的函数关系式.
(2)当点P在线段AB上时,点P运动几秒时,S△PCQ=S△ABC?14
(3)作PE⊥AC于点E,当点P.Q运动时,线段DE的长度是否改变?证明你的结论.发布:2025/6/23 23:0:10组卷:243引用:1难度:0.1